Environmental Impacts of Water Use, Water Conservation and Storm Water Management

Jeff Edstrom & Sanjiv Sinha, Ph.D. Oakland County Stormwater Summit October 3, 2014

Project Partners

Funded by:

Great Lakes Protection Fund

Project Goals

- Better understanding of environmental and financial implications of water conservation and green infrastructure projects for municipalities by testing in 6 municipalities
- Lessons learned shared with other municipalities
- Knowledge-transfer techniques set up to keep sharing occurring after project completion

Project Premises

- Integrated view of water system essential in decisionmaking that combines:
 - Water supply
 - Water conservation & efficiency
 - Storm water
 - Waste water
 - Green infrastructure
- Need to combine short- and long-term perspectives
- Need to combine environmental and financial perspectives
- One size does not fit all, but valuable lessons still can be learnt from other municipalities' experiences

ECT Methodology

- Effects of withdrawals of same amounts of water have different impacts based on:
 - Source type (Great Lakes, shallow groundwater, confined groundwater, river)
 - Type of storm sewer system (combined or separated)
 - Stormwater management practices
 - Location of discharge for treated wastewater (stream, river, ground)
- Timing of environmental impacts differ based on location and factors listed above

Methodology: Environmental Impacts

- Used a tool developed for a project previously funded by the Great Lakes
 Protection Fund. Looks at the generalized impacts you could expect to see based on research of communities in the Great Lakes.
- Reviewed water use and wastewater impacts in each community.

3				
4		Environmental Consulting & lechnology, Inc.		
5	Wate	er Conservation and Protec	tion 1	ГооІ
6				
7		Step 1:		
8		Select your water supply type below:		
9		Great Lakes or Connecting Channel		
10		River or Stream		
11		Shallow Groundwater		
12		Confined Groundwater		
13				
14				
15				
16				

Shallow Groundwater Supply Step 2: Identify the type of wastewater treatment system What is the type of Receiving Water (Select one) Tributary River Storm Sewer System Separated Sewer System Information on water conservation and protection activity prioritization is found at: Click to next page Return to Overview and Start page	Water Conservation and Protection Tool	Environmental Consulting & Technology, Inc.
Shallow Groundwater Supply Step 2: Identify the type of wastewater treatment system What is the type of Receiving Water (Select one) Tributary River Storm Sewer System Separated Sewer System Information on water conservation and protection activity prioritization is found at: Click to next page Return to Overview and Start page Return to Overview and Start page		с
Step 2: Identify the type of wastewater treatment system What is the type of Receiving Water (Select one) Tributary River Storm Sewer System Separated Sewer System Information on water conservation and protection activity prioritization is found at: Click to next page Return to Overview and Start page	Shallow Groundwater Supply	
What is the type of Receiving Water (Select one) Tributary River Storm Sewer System Separated Sewer System Information on water conservation and protection activity prioritization is found at: Click to next page Return to Overview and Start page Return to Overview and Start page	Step 2: Identify the type of wastewater treatment	system
Storm Sewer System Separated Sewer System Information on water conservation and protection activity prioritization is found at: Click to next page Return to Overview and Start page	What is the type of Receiving Water (Select one)	Tributary River
Information on water conservation and protection activity prioritization is found at: <u>Click to next page</u>	Storm Sewer System	Separated Sewer System
activity prioritization is found at: <u>Click to next page</u> Return to Overview and Start page	Information on water conservation and protection	
Return to Overview and Start page	activity prioritization is found at:	Click to next page
Return to Overview and Start page		
Return to Overview and Start page		
		Return to Overview and Start page

	Water Supply Impacts		Clipboard	G.		Font	G		Alignme	nt 🕞
	What is your water utility's unaccounted for flow (the amount of leakage from	Loss than %	A1	- (9	f_{x}				
	water mains)?	Less than 670				В				С
	Do you have a formal leak detection program?	Yes	Water Con	servatior	1. Protect	ion and Ma	anagement	Priorities		0
	Do you anticipate growth that will require expansion of your water withdrawal	Voc	Reduce wa	ter use de	emand					LOW-MED
	and treatment facilities?	165	Reduce Sur	mmer wat	ter use de	mand				LOW-MED
	Are there other communities near yours that draw from the same water supply	Yes	Sourcewat	er protect	tion					MEDIUM
	source?		Stormwate	er manage	ement					MEDIUM
	What best describes your outdoor water use restrictions?	No water use	Replace hardscape with green infrastructure and permeable pavement				t	MEDIUM		
		during daytime	Low Impac	t develop	ment and	Conservatio	on Design			MEDIUM
		Between 51%	Leak detec	tion progr	ram					CONTINUE PROGRA
	What approximate percentage of your community was built since 1994?	and 84%	Aggressive	leak dete	ction and	repair				HIGH
	Is there significant use of curb and gutter and impermeable pavement that directs	Ves	Inflow and	Infiltratio	n reductio	on program				HIGH
	water into a significant stormwater system?	105				1 0				
	What type of development practices are required (or encouraged) in your	Conventional	Dummin of							
	community?	Development	Pumping fr	om snallo	w grouna ad to baco	water sourc	es can diver	includes come or	way fron	n streams that streams (that flow w
	Have wetlands in the community largely been eliminated through infill for	Ves	round) boc	oming mo	ro intorm	ittont and i	ntormittont	strooms more on	abomora	L flowing only during
	development?	105	narts of a v	onning mo (oar) As st	tream floy	wis reduced	from decre	scied water flowi	ng to the	a stream, water qual
	Wastewater and CSO Discharges		could also	decrease	Degradat	tion of wate	r quality ste	mming from a re	aduction	in hase flow
	Do you anticipate growth that will require expansion of your wastewater	Voc	contributio	on, would l	he esnecia	ally pronoun	ced in stream	ms that receive w	vastewa	ter effluent.
2	treatment facilities?	105	Wastewate	er dischare	ges would	l provide ba	se flow that	may improve stre	eam flow	, however, if
	Has your wastewater utility treated 25% more water than the water utility	No	groundwat	ter is draw	/n from a v	watershed t	that is differe	ent from the wat	ershed v	vhere wastewater is
3	pumped for public supply during any of the the last five years?		discharged	, one wat	ershed wo	ould see a d	ecrease in st	ream flow, while	the oth	er would see a
	Does the treated wastewater to the receiving water provide additional flow that	Not Sure/Not	decrease.	This would	d alter hyd	drology that	t would also	impact plants and	d the typ	pes of plants on the
	improves habitat by providing flow, particularly at low flow (for example,	applicable	ground, we	etlands, as	s well as fi	sh and othe	r aquatic ha	bitat.		
8	increasing levels, allowing for better fish passage)?	appricable								
	Are the bulk of nutrients in the stream caused by nonpoint source runoff?	Not Sure/Not	Shallow gro	oundwate	r water so	ources are a	lso more sus	ceptible to droug	ght as th	e water table is
9		applicable	sensitive to	changes	in rainfall	and snowm	elt. In time	s of drought, the	availabi	lity of water is
			decreased,	, impacting	g public w	ater supply/	and forcing	it to compete mo	ore with	ecological resources

36

that also depend upon the groundwater. The impacts can also be increased in areas where rainfall and snowmelt are diverted through piped storm water systems away from the ground and directly into streams. It decreases the amount of water that would otherwise go to recharge groundwater

Polluted storm water runoff is commonly transported through Municipal Separate Storm Sewer Systems (MS4s), from which it is often discharged untreated into local water bodies. Storm water runoff is generated when precipitation from rain and snowmelt events flows over land or impervious surfaces and does not percolate into the ground. As the runoff flows over the land or impervious surfaces (paved streets, parking lots, and building rooftops), it accumulates debris, chemicals, sediment or other pollutants that could adversely affect water quality if the runoff is discharged untreated. The primary method to control storm water discharges is the use of best management practices (BMPs). In addition, most storm water discharges are considered point sources and require

coverage under an NPDES permit. Diversion of storm water from the ground decreases recharge of

sources that support public water supplies as well as ecological resources.

Б.

ye

ıali

The Three Water Cycles

Natural Water Cycle

The natural continuous movement of water on, above, or below the surface of the earth.

Water Use Cycle

The flow of water drawn for human use, undergoing pipe flow, treatment and distribution.

Interrupted Water

Cycle

Precipitation and snow melt is directed to storm sewer systems via impervious surfaces.

The Michigan Municipalities

The Water Use Cycle

- Protect Water Recharge
- Protect Sourcewater
- Reduce Impacts of Water Use Withdrawal

Factors that dictate water use impacts

- Type of water supply used
- Local hydrology
- Development patterns
- Upstream water use
- Storm water management design
- Wastewater discharge location

Different Water Sources Cause Different Impacts

- What are the impacts if 1 MGD of water is withdrawn from...
 - A Great Lake?
 - A groundwater aquifer?
 - A river source?

AWE Analyzed the Costs and Benefits of Efficiency Programs for Six Communities

Components of AWE Tracking Tool Analysis

<u>Inputs</u>

- Demographic data
- Weather data
- Customer rates
- Water demand
- Avoided costs
- Efficiency programs
- Energy use

<u>Outputs</u>

- Water savings
- Costs and benefits
- Impact to revenue and rates
- Energy and emission reductions

2010 Total Water Consumption by Quarter (MG)

Why is Commerce Township's Peaking Factor the Lowest?

Possible reasons:

- Smaller lot sizes
- Older housing stock may = less automatic irrigation systems
- Higher water rates
- Commerce has outdoor water use restrictions
 - Odd/Even alternate days + time of day restrictions

Commerce Charter Township, (Oakland Co.), Michigan, Code of Ordinances Sec. 40-169. - Outdoor water use restrictions.

Water Efficiency Programs Evaluated

Toilet replacements

- Replace 3.5 gpf toilets with WaterSense labeled toilets.
- Require the replacement of all 3.5 gpf toilets in participating homes.

Residential Clothes Washers

- **Residential Efficient Irrigation Nozzles**
- **Residential Irrigation ET Controllers**
- **Residential Soil Moisture Sensors**
- Large Landscape Surveys
- Large Landscape Irrigation Controllers

Cost-Benefit Analysis

	<u>Commerce</u>		<u>Lyon</u>			SW Oakland		
Activity Name		NPV (\$)	B/C Ratio	NPV (\$)	B/C Ratio		NPV (\$)	B/C Ratio
Residential HE Toilets	\$	2,580,634	13.57	\$ 28,304	1.42	\$	90,117	2.29
Residential HE Washer	\$	132,070	2.84	\$ (10,400)	0.45	\$	(5,642)	0.71
Residential Efficient Irrigation Nozzles	\$	(2,205)	0.51	\$ (3,996)	0.09	\$	(4,100)	0.09
Residential Irrigation ET Controller	\$	7,781	1.22	\$ (27,862)	0.20	\$	(28,419)	0.21
Residential Soil Moisture Sensor	\$	74,341	3.08	\$ (10,624)	0.69	\$	(6,126)	0.83
Large Landscape Surveys	\$	138,919	4.27	\$ (10,539)	0.74	\$	(9,602)	0.77
Large Land. Irrigation Controller	\$	424,741	3.94	\$ (50,457)	0.64	\$	(48,320)	0.66
Total	\$	3,356,282	7.22	\$ (85,575)	0.75	\$	(12,091)	0.97

Components of Successful Landscape Water Efficiency Programs

- Target high irrigation users
- Educate contractors and customers
- Follow-up to assess water savings
- Follow-up to ensure equipment is programmed and functioning properly
- For turf that is not replaced with native plants or other options, maintain turf quality

Strategies Beyond Water Conservation Programs

- Rate design
- More frequent billing
- Education
- Ordinances and codes
- Requirements for new development
- Watering restrictions
- Irrigation professional certification

The Interrupted Water Cycle

- Impacts of groundwater recharge
- Impacts of pushing water into streams
 - During rain events
 - Downstream flooding
 - Greater volumes and velocities of water going through streams
 - On times when there are droughts
 - Less baseflow going to streams from groundwater because had been pushed into streams
 - Lower stream flows and volumes
 - Greater likelihood of contaminants being pulled off of roadways

Broad vs. Concentrated Impacts of Stormwater

- Rain falls over a broad, large scale surface area.
- Water is pumped from wells impact is concentrated in that specific area.
- When water falls on pavement, water is moved from a wider area and discharged to specific concentrated locations in a stream.

Groundwater Withdrawals

- Divert groundwater away from streams that previously contributed to base flow
- Decrease water quality as stream flow is reduced
- Decrease water available to surface ecology
- Lead to increased impacts during times of drought
- Pull water from surface water sources to recharge aquifers

Great Lakes Surface Water Withdrawals

- No measureable impacts on lakes
- Impacts associated with urbanization, not withdrawal
- Water that would flow into terrestrial habitats or wetlands now flows into storm sewers
- Upstream urban and Agricultural runoff
- Water use increases in summer. Water has to move approximately 90 miles from Lake Huron to Commerce Township to water lawns

Urbanization Impacts

- More impervious surfaces
- More debris in runoff
- Less natural infiltration
- Increasing storm sewer and POTW flows
- Blacktop temperatures
- More CSO's
- In already heavily developed areas of Oakland County, stream flow altered
 - Higher high flows and lower low flows
 - Need to take into account in developing areas

Runoff Gallons per Road Mile

Cover Type Assuming D Type Soils	Soil Type	Area (sf)	Area (ac)	Runoff Volume, V (ft ³)	Runoff Volume (gallons)	Yearly Average Volume (gal)
Roadway	D	126,720	2.9091	8,352	62,473	1,360,946

- 1-inch Rain
- 24 Foot Wide Road
- 1 mile long
- Does not include parking lots or runoff from land adjacent to roads

How much water runs off of a 1 mile road, 24 feet wide?

- Assuming a 1 inch rain event, approximately 400 Million Gallons of water runs off from impervious surfaces alone.
- All roads in Oakland County generate well over 10 billion gallons of runoff per year - just the roads
- Does not include parking lots, water flowing to roads
- Does not address all of the multilane highways

Rooftop Capture

- What size of cistern would capture rooftop runoff? (A 1250 square foot roof generates over 600 gallons of water in a one inch rain)
- Can the water be reused?
- Can it be released at later times to enter the system?

Volume of Water Falling on a Roof

Cover Type	Area (sf)	Area (ac)	Runoff Volume, V (ft ³)	Runoff Volume (gallons)	Yearly Average Volume (gal)
Assuming D Type Soils					
Pavement and Rooftop	1,250	0.0287	82	616	13,425

1 inch rain25 x 50 foot roof (1250 sq. ft.)

Recharge and Projecting Water Use Reductions

- Main recharge occurs primarily in winter snow melt and spring rains
- Summer rainfall more likely to evaporate off the surface
- Need to look at spring rainfall and impact on groundwater levels
 - Anticipate lower groundwater levels during main outdoor watering season
 - Provide public education on potential need for outdoor watering reductions

The Cost and Value of Green Infrastructure

	А	В	С	D	E	F	G	Н
1						Co	st	
2	Management Practice	Proposed Area (ac)	Area (sf)	Volume Captured (cf)	Volume Captured (gal)	Volunteer	Contractor	
3	Urban Reforestation	1.00	43,560	33	246	\$ 62,495	\$ 110,637	
4	Forest Retention**	1.00	43,560	6,394	48,474	\$ 54,784	\$ 111,998	
5	Wet Meadow	10.00	435,600	435,600	3,258,724	\$ 796,413	\$ 796,413	
6	Native Prairie	10.00	435,600	294	2,197	\$ 274,616	\$ 291,101	
7	Agriculture	10.00	435,600	294	2,197	\$ 264,473	\$ 280,968	
8	Raingarden	1.00	43,560	24,684	184,661	\$ 301,220	\$ 772,900	
9	- Ricewalee**	5,000.00	< Enter desi	red linear feet				
10	Dioswaics	2.41	105,000	105,000	785,505	\$ 216,058	\$ 216,058	
11	Totals	35.41	1,542,480	572,298	4,282,003	\$ 1,970,059	\$ 2,580,076	
12	** Contractor Only							
13	*** Assume 1" storm, D class	soil						
14								
15	Capital costs to build a 4,282,003.10 gallon c		gallon conventi	onal retention faci	ity:			
16	Cost per gallon	\$ 3.22		Total cost		\$ 13,795,385		
	Maintenance Costs per							
17	gallon over 20 years	\$ 2.15		Total cost		9,196,923		
18				Total cost		22,992,308		
19	19 Treatment Cost Savings Analysis							
20	20 Total Projected Treatment and Chemic		ngs	\$ 3,583				
21								
22	Estimated Power Savings							
23	Cost of Energy (per KWH)			\$ 0.074				
24	4 Total kWh Saved			146,864				
25 Total Projected Power Savings				\$ 10,868				
26								
		L,		,	· , ·			

Summary of Lessons Learned for Decision-Making

- Need to take integrated water system approach to planning
- Need to combine both water supply and water management in planning
- Central part of solution is a combination of water conservation/efficiency and green infrastructure programs

Knowledge Transfer Tools

- Great Lakes Commission Knowledge Transfer Site
 - http://glc.org/projects/water-resources/water-mgmt/
- The AWE Water Pricing Tool
 - <u>http://www.allianceforwaterefficiency.org/tracking-tool.aspx</u>
- The ECT Water Resource Planning Tool
 - Identify starting points for developing water effective conservation plans and strategies
- Municipality Guidance

Tools

- Alliance for Water Efficiency Water Use Tracking Tool (Available for AWE members)
- Alliance for Water Efficiency Rate Scenarios Tool (Free online)
- Water Conservation Planning Tool (ECT developing for this project)
- Green Infrastructure impacts estimating and costs tools (ECT)

Water Conservation

Water Conservation Options

- Outdoor water use education
 - How often do lawns need to be watered
 - When are the best times of day for the lawn and overall water management
- Outdoor water use ordinances
 - Time of day
 - Number of times per week
- Taking residential rainwater harvesting beyond the rain barrel
- Explore integrated decentralized rainwater harvesting and runoff control system model project

Stormwater

Stormwater Management Plans

- Encouraging more green infrastructure
- Target broader implementation in specific areas
- Wellhead protection in areas that do not have it
- Green infrastructure model design for participating communities
 - Small rain gardens of about 30 square feet can capture about 150 gallons in a one inch rain
 - 50 in an area captures a total of 7500 gallons of runoff
 - Keeps more water off the streets

• Rain barrels and cisterns

- Managed systems that can automatically empty before a rain
- How much water can you hold in a rain?

Thank You

Jeff Edstrom 734-769-3004 jedstom@ectinc.com

