

Canadian national ballast water risk assessment

S.A. Bailey,

O. Casas-Monroy, R.D. Linley, J.K. Adams, F.T. Chan, D.A.R. Drake

General Objectives

- To conduct an analysis of the relative risk among different ballast water pathways in Canada
- Consider the potential for arrival and survival of zooplankton and phytoplankton NIS (microbes are not considered) as well as the magnitude of consequences of these aquatic NIS
- Consider risk posed by ballast water from commercial ships under current regulatory requirements, as well as future requirements for International Maritime Organization (IMO) D-2 performance standards

Why Use a Risk Approach?

Simple

To facilitate the description, understanding and management of complex systems

Allows evidence & information to be objectively collected and combined

Give the basis for science-based decisionmaking Likelihood of an AIS introduction

Magnitude of consequence

Uncertainty

(Fazil, 2005)

Shipping Pathways in Canada

International Exempt vessels

Vessels operating outside the Canadian EEZ, but within the exchange exemption zone Coastal Domestic vessels

Vessels operating between Great Lakes, Canadian Atlantic & Arctic ports

International Coastal U.S. vessels

Vessels operating outside the Canadian EEZ and the exchange exemption zone on a coastal U.S. route

International Transoceanic vessels

Vessels operating outside the Canadian Exclusive Economic Zone (EEZ) on a transoceanic route

Atlantic vessels

Vessels that operated exclusively between Atlantic ports inside the Canadian EEZ

Lakers

Vessels that operated exclusively within the Great Lakes and the St. Lawrence Estuary

¹Minimum probability approach; ²Mixed rounding matrix approach

Step 1A

Estimating p(arrival)

- -Probability that a non-indigenous species (NIS) will arrive
- -For each pathway in all the regions:

Abiotic

- •Obtain shipping data from government agencies
- •Vol. of ballast water discharged as proxy for arrival potential
- •# of discharge events

Biological

 Obtain abundances zooplankton/phytoplankton from recent studies

[Canadian Aquatic Invasive Species Network – CAISN; Fisheries and Oceans Canada:

Bailey et al. 2011; Briski et al. 2012a,b; Dibaccio et al. 2012; Humphrey et al. 2008; Klein et al. 2009; Roy et al. 2012]

Step 1A

Montecarlo simulation

1) For each discharge event

2) Randomly assign an organism density based on the probability distribution (and tank volume)

Result: Annual Propagule Pressure (num organisms discharged/pathway/year)

Result: Propagule Pressure per event (num organisms discharged/pathway/event)

Step 1B

Estimating p(survival)

Salinity classification Freshwater = 0.0 - 5.0‰ Brackish = 5.1 -15.9‰ Marine = >16‰ Climate classification
Polar = > 60° N
Cold-Temperate = 40° - 60°
Warm-Temperate = 20° - 40°
Tropic = 0° - 20° N

- Matrix approach will be used to assess similarity between source-recipient ports
- Combine salinity and climate similarities => single environmental measure
- Assign p(survival) rating based on the percentage of "High" suitability scores within each pathway using breakpoint analysis

Step 2

Estimating magnitude of consequences

- Tabulate the # of high impact NIS (AIS) in connected ecoregions
- Assume each connected port may be a donor of all AIS in the ecoregion

- Summarize cumulative # of AIS by each pathway within regions
- Comparisons for each pair of pathways based on statistical differences to assign the rating of magnitude of consequence

Step 3

Estimating invasion risk

- Combine p(introduction) and magnitude of consequences using a mixed rounding matrix approach (Orr 2003; DFO 2009)
- Uses the GLSLR International transoceanic vessels as a bench mark.

		P (Introduction)					
		Lowest	Lower	Intermediate	Higher	Highest	
Consequence	Highest						
	Higher						
	Intermediate		GLSLR International				
	Lower						
	Lowest						

Results: Current Risk

	Current Risk under BWE		
Pathway	Annual	Per Discharge Event	
Arctic Coastal Domestic	Lowest	Lowest	
Arctic International Transoceanic	Lowest/Intermediate	Highest	
Eastern Coastal Domestic	Lowest/Intermediate	Highest	
GLSLR International Transoceanic	Lowest	Lowest	
Lakers	Highest/Lowest	Highest/Lowest	
Atlantic International Coastal U.S.	Intermediate/Highest	Highest	
Atlantic International Exempt	Intermediate/Highest	Highest	
Atlantic International Transoceanic	Highest	Highest	
Pacific International Coastal U.S.	Highest	Highest	
Pacific International Exempt	Highest	Highest	
Pacific International Transoceanic	Highest	Highest	

Note that risk differed for some pathways depending on taxonomic group being considered (reported as zooplankton/phytoplankton)

Results: Future Risk

	Future Risk under IMO D-2		
Pathway	Annual	Per Discharge Event	
Arctic Coastal Domestic	Lowest	Lowest	
Arctic International Transoceanic	Lowest/Intermediate	Lowest/Highest	
Eastern Coastal Domestic	Lowest	Lowest	
GLSLR International Transoceanic	Lowest	Lowest	
Lakers	Lowest	Lowest	
Atlantic International Coastal U.S.	Lowest/Highest	Lowest/Highest	
Atlantic International Exempt	Lowest/Highest	Lowest/Highest	
Atlantic International Transoceanic	Lowest/Highest	Lowest/Highest	
Pacific International Coastal U.S.	Lowest/Highest	Lowest/Highest	
Pacific International Exempt	Lowest/Highest	Lowest/Highest	
Pacific International Transoceanic	Lowest/Highest	Lowest/Highest	

Note that risk differed for some pathways depending on taxonomic group being considered (reported as zooplankton/phytoplankton)

Conclusions

- Current requirements for BWE reduce the risk of invasions for freshwater ecosystems (Great Lakes), but are less effective for marine ecosystems
- Future projections indicate D-2 discharge standard will dramatically reduce arrival potential of zooplankton for all pathways, but will have lesser effect for phytoplankton
- The risk of domestic vessels for introduction of aquatic NIS is variable across regions, taxa and timescales. Lakers pose a relatively high risk for zooplankton NIS at both timescales

Considerations

- Analyses are based on 2006-08 shipping patterns and environmental conditions - reanalysis may be required with climate change and/or changes in shipping traffic
- Biological data was not available for all shipping pathways uncertainty is greater for pathways where assumptions were used
- Enforcement levels are a potentially confounding factor, being greater in the GLSLR than other regions
- National risk assessment considers only ballast water discharges by merchant vessels – additional work is required to assess risk of hull fouling by merchant and non-merchant vessels

Thanks to lab members, CAISN students, academic / gov't collaborators, and industry partners!

Downloads:

DFO Research Document: http://www.dfo-mpo.gc.ca/Library/352598.pdf

PLoS ONE: http://dx.doi.org/10.1371/journal.pone.0118267

