Uncovering How Clean is Clean: Great Lakes Invasive Species

A collaborative project of the Northeast-Midwest Institute's Great Ships Initiative

A. Cangelosi (Principal Investigator), M. TenEyck, D. Branstrator, R. Aicher, E. Reavie, M. Aliff

Great Lakes and St. Lawrence Ballast Water Workshop November 16-17, 2016

Project Rationale

- There is a desire to reduce concentrations of live organisms in ballast water discharge to eliminate ship-mediated AIS invasions.
- Premise: densities of live organisms (including AIS) arriving (<u>release</u>) influences probability of establishment (<u>risk</u>) (Ruiz & Carlton, 2003).
- National Research Council report (NRC, 2011) explored scientific basis for BW discharge standards:
 - Profound lack of data on the <u>risk-release</u> relationship across species, time, and environments, on which to base discharge standards.
 - Proposed path forward:
 - Use IMO standard as a starting point
 - Conduct research:
 - Short-term mesocosm experiments.
 - Longer-term (decadal) field surveys.
 - Little guidance on how to implement research productively.

Project History

- NEMWI, UWS already researching topic.
 - UWS-LSRI's TenEyck conducted mesocosm studies for Ph. D dissertation with UMD's Branstrator
 - NEMWI's Cangelosi Served on NRC Risk Release
 Panel;2010: 2011-2013: NEMWI (Cangelosi) with UWS
 (TenEyck) submit GSI collaborative GLPF proposal)
- GSI team receives 2 year GLPF funding for "Phase 1", i.e., methods development
- Project team receives 2 year GLPF funding for "Phase II", i.e., methods validation

Project Objective

- Explore feasibility of determining the risk-release relationship in a Laurentian Great Lakes harbor using a combination of mesocosm experiments and field surveys;
 - If feasible, develop methods for doing so;
 - If possible, generate initial data on the relationship

Ultimately we aimed to make recommendations on the feasibility of our approach for broader applications in the Great Lakes region and elsewhere.

Characterizing Risk-Release Relationship Using Field Surveys

Validation of Tools used in Field Surveys

- Project Experiments:
 - Identify a target organism
 - Explore role of opportunity mapping for targeting ships/sampling sites
 - Validate genetic detection using eDNA as a screening method (preserved and raw samples)

Significance - Field Survey Results

Findings show:

- Harbor/BW quantitative screening for in-coming organisms likely feasible given:
 - Target organisms
 - eDNA as a screening tool (raw water samples)
 - Microscopic enumeration samples with eDNA hits
 - Time, replicates across harbors
 - should be decadal,
 - three or more locations in basin
- Identification of target receiving environments may or may not be feasible depending on
 - specialization of organism
 - Geophysical features of receiving systems
 - eDNA screening of receiving system water may be feasible alternative to conventional survey approach

Overview of Experimental Objectives for Mesocosm Methods Development

- Simultaneously fill multiple replicate mesocosms with natural Duluth-Superior Harbor water.
 - Determine trial duration and ability to recover 'invaders' based on:
 - life history/physiology
 - sample collection procedures
- Verify growth is possible under experimental conditions.

Duluth-Superior Harbor

Photo credit: Army Corp of Engineers

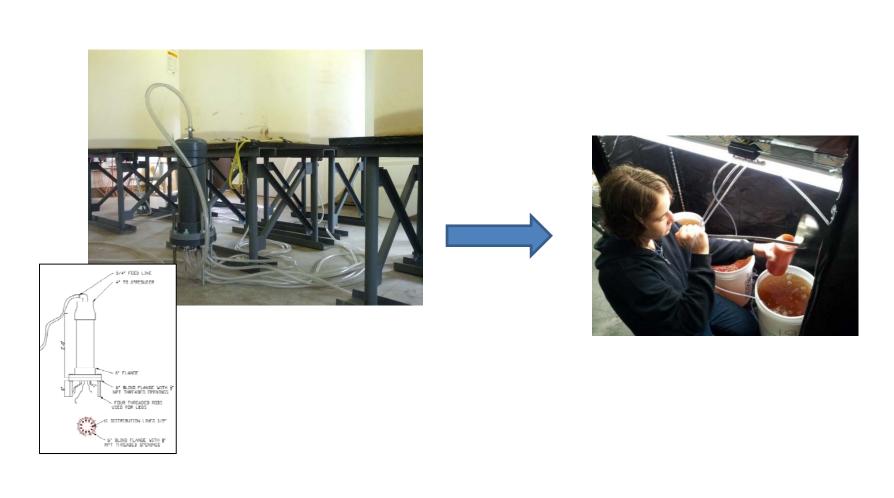
Surrogate Invaders

Bythotrephes longimanus (Crustacea: Cladocera)

1000-L mesocosms, 2-week incubations

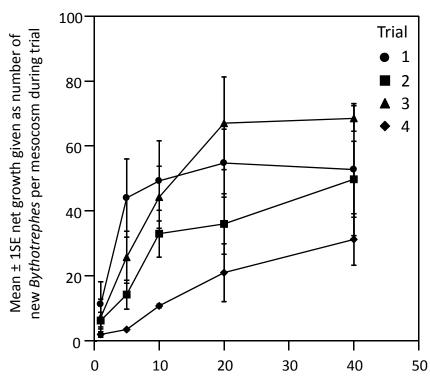
Carnivore

Melosira varians (Protista: Bacillariophyta)



19-L mesocosms,4-week incubations

Primary producer


Mesocosm Tank Filling

Verification of growth

- Melosira Multiple trials had positive growth.
- *B. longimanus* reduced light levels (tanks covered and wrapped in black plastic) growth and reproduction occurred.
 - We see more 2nd and 3rd instar Bythotrephes after two weeks
 - Approximately 2x more Bythotrephes recovered
- Importance of keeping results in perspective
 - Highly preliminary; still sparse data
 - Not a natural system
 - Many variables can influence survival/reproduction

Bythotrephes results

Inoculation given as number of *Bythotrephes* added per mesocosm at start of trial

Summary

Methods adequate to begin to examine risk-release relationship:

- Simultaneously fill multiple replicate mesocosms with natural Duluth-Superior Harbor water.
- Determine trial duration and ability to recover 'invaders'.
 - Verify growth is possible under experimental conditions.

We are beginning to characterize to the relationship between establishment probability and propagule-pressure of the aforementioned test species.

Significance of Results - Mesocosms

Opportunities:

- Replication
- Control
- Organism recovery
- Containment
- Assessment of environmental and demographic factors.

• Limitations:

- Mesocosm volume
- Experimental duration
- Population sizes achieved
- Life-cycle completion