Underwater video is an effective tool to reveal Dreisseng spatial distribution and biomass

Alexander Karatayev, Lyubov Burlakova, Knut Mehler – Buffalo State Vadim Karatayev – UC Davis Thomas Nalepa – University of Michigan Ashley Baldridge – NOAA, Ann Arbor Elizabeth Hinchey-Malloy – Great Lakes National Program Office, U.S. EPA

Dreissena (zebra and quagga mussels) represent novel ecological type in the freshwater ecosystems

- Both species have high fecundity, planktonic larvae and an attached benthic adult stage, and they are highly efficient filter feeders
- Their life history allowed them to spread rapidly across landscapes, and become enormously abundant when introduced into a new waterbody
- Being powerful ecosystem engineers they deeply modify freshwater ecosystems (Karatayev et al., 1997, 2002, 2007, 2015; Pimentel et al. 2005; Keller et al. 2007; Higgins & Vander Zanden 2010)

Dreissena ecological impacts depends on:

- population size
- population dynamics
- distribution within a waterbody

In order to accurately predict *Dreissena* ecological impacts we need to know:

- > How many of them are there?
- > Where they are?
- > Are their increasing or decreasing?

Population size and distribution

• However *Dreissena* distribution **fluctuates widely** at all spatial scales

Population size and distribution

Almost every study of *Dreissena* in the Great Lakes has relied on bottom grabs with a small sampling area limiting our ability to understand the scale of the spatial variability

To understand large scale distribution and estimate population size with a greater confidence we need to overcome local patchiness

Lake Michigan 2015 CSMI (158 sites sampled)

- 469 ponar samples
- 616 videos taken from GoPro on ponar
- 44 videos taken from benthic sled tows

Dreissena coverage in still images

Ponar:

calculated from 5 randomly chosen still images within the larger still image for each Ponar

Benthic sled:

video from 500 m transects clipped into individual images coverage from 100 randomly

distributed still images

Estimating Dreissena coverage from a sled tow

PS File Edit Image Layer Type Select Filter 3D View Window Help											_ @ ×									
♥ + ■ ■ Feather: 0 px ♥ Anti-alas Refine Edge											3D									
2 🚬 🚦 🖞 🗊 2 번 번 및 옷 내 것 일 🖬 수 에 한 번 2 🖬 🗐 한 에 🚰 🖻 🖻	File	Edit Image Laye	r Type Select asher 0 px Basin 937.psd @ 66.7	Filter 3D View Ant-akar Refine % (Layer L RGB/8) *												History Połygonal La Fil Custom Mease	History - Open - Polygonal Lasso - Fril - Custorn Measurement Scale -			- 43 ×
								1. C.A.								Histogram Channel: Colors	⇔ on 4- ; C ÷	• • •	Layer 2	
	66.67%	D <u>oc: 3.5</u>	52M/720.7M ►														A	Properties R : G : B : B-bit	Info	C: (M: Y: K: 8-bit
	Timelir	Measurement Log														Source: Entire Image	: ≎	+ ¥:		W : 14.028 H : 6.736
	Rece	ord Measurements													(m) ing 📾 🏛	Mean: 72.17 Std Dev: 42.78	Count:	Doc: 3.52M	/720.7M	
		Label	Date and Time	Document	Source	Scale	Scale Units	Scale Factor	Count	Area	Perimeter	Circularity	Height	Width	Gray Value (Minimum) Gray Valu	Median: 58 Pixels: 106117	Percentale: Cache Level: 2	Click to set	a selection seg	ment point. Use
		measurement 1	7091/J2014 1:49:4	oressenia oromass	- Helecoon	oressend coverag		12.121212		200575175	235.220414		39,950,000	83.160000	30,00000	Clone Source Character Paragraph		Shift, Alt ar	ia Ciri for addit	onal options.

Dreissena coverage was calculated based on **100 frames** randomly distributed along 500 m of benthic sled video transects using semi-automatic method

Sampling area

Because of the patchy distribution of *Dreissena*, larger sampling area and more replicates should provide better estimation of the bottom coverage

- Ponar sampling area **0.053** m²
- Go Pro attached to a ponar (0.046m² x 4 Ponars x 5 frames = **0.92** m²)
- Go Pro attached to a benthic sled 100 frames (0.16 $m^2 \times 100 = 16 m^2$)
- The whole transect (0.16 m² x 800 frames = **128** m²)
- 1 Video from a sled tow = 300 ponars

Lake Michigan 2015: Video image analysis

44 video transects were recorded with a Go Pro camera mounted on a benthic sled towed behind the boat for 500 m

- 88% are usable (70% great, 18 OK)
- 5% not usable due to uncontrollable events (algae cover)
- 7% not usable due to technical problems (cable, light, wrong angle)

45 m

50 m

54 m

139 m

165 m

Video clip (160 m depth no Dreissena):

Video clip (80 m depth, lots of *Dreissena*):

Video clip (120 m depth, few Dreissena):

The whole *Dreissena* coverage was counted at 4 transects with different degree of coverage (2800 images total)

Relationship between number of frames sampled and estimated *Dreissena* coverage (bootstrapping)

Number of frames sampled (blue line 95% confidence interval)

100 randomly selected frames from each transect appeared to be an appropriate number

Estimating Dreissena coverage (%)

Site (depth)	Whole Transect (# of frames)	100 Frames ±SE	20 Ponars ±SE	4 Ponars ±SE		
74900 (45m)	8.6 (741)	8.0±0.3	51.1±4.2	44.0±9.7		
9562 (123m)	0.6 (582)	0.5±0.2	0	0		
SY-5 (77m)	77.9 (787)	76.0±1.1	53.4±2.6	51.0±7.8		
M-5 (26)	1.7 (601)	2.0±0.7	32.1±9.3	37.0±21.0		

- There was a significant difference between coverage estimated from transects and ponars in 2 cases
- Ponars missed *Dreissena* on low density transects
- Mean coverage estimated from 100 frames randomly distributed along a transect was much closer to the "true value" than coverage estimations from ponars
- Mean coverage estimated from 4 and 20 ponars did not differ, suggesting that addition of more replicate ponars will not increase precision of our estimation

Estimating *Dreissena* coverage from transects, 20 ponars (upper graph), and 4 ponars (lower graph)

Estimates of mussel cover from transect videos (blue) vs. cover in actual ponar sample (green). Error bars are +/- 1 SE.

- > 60% sites differed significantly between transect and ponars
- Transects did not record *Dreissena* at 6 sites
- Ponars (20 reps) did not record *Dreissena* at 7 sites
- Ponars (4 reps) did not record *Dreissena* at 9 sites

Preliminary findings:

- In shallow areas (<50 m) large patches of *Dreissena* likely due to large scale environmental factors (e.g. substrate, hydrology, etc.)
- At intermediate depths (50 110 m) virtually all bottom is often covered with *Dreissena*
- At >110 m Dreissena forms very small druses evenly distributed on the bottom (intraspecific competition for food?)

Converting Coverage into Biomass

To convert coverage into biomass, we calculated surface area/biomass relationship for 307 *Dreissena* druses collected from different depths

60

50

= 0.80

40

n = 307

Surface area of each druse was <u>determined</u> in Photoshop

Coverage vs. biomass

- Relationship between druse surface area and wet biomass differed among depths
- Dreissena biomass per surface area declined with depth
- In deep areas *Dreissena* does not form multilayer aggregations

Cost-Benefit Analysis: Video transect vs. ponar grab (a hypothetical example)

2015 Lake Michigan sampling (158 sites, 469 ponars collected x 0.053 m² sampling area = **24.9 m² of total area sampled**):

- Sorting of 469 samples ca. 470 days,
- counting and measuring ca. 130 days total 2.4 years of technician time
- + time for data analysis

Suggested design (79 sites, 79 ponars + 79 sled tows = 1,268 m² of total area sampled):

- Sorting of 79 samples ca. 80 days
- counting and measuring ca. 20 days
 total 7 months
- Analysis of 79 video transects 60 days
- + time for data analysis.

Suggested total sampled area is equal to 23,925 ponars, which will require > 90 years of technician time to process and > 20,000 L of formalin on board of R/V Lake Guardian

*Note: suggested design for *Dreissena* only, other benthos may be analyzed from 79 ponars (requires additional time)

Video transect vs. ponar grab

60 days of watching movies and eating popcorn or 90 years of sorting dead *Dreissena* and smelling formalin?

Conclusions

- Dreissena is the only freshwater invertebrate that, due to their large body size and high density, can be detected using remote sensing, allowing for rapid collection and processing of information
- Underwater video could be a very efficient tool and a great supplement to a traditional sampling for monitoring of *Dreissena* distribution, coverage, and biomass in Great Lakes (1 video from a sled tow = 300 ponars)
- Underwater video could also be used to estimate macrophyte coverage (e.g., Cladophora)

Acknowledgments

- This project was funded in part by the Great Lakes Long-term Biological Monitoring Program (US EPA) and by "Lake Erie and Lake Michigan Benthos: Cooperative Science and Monitoring Initiative" (USGS)
- We would like to thank all EPA and Buffalo State employees and students for their help in collecting and processing samples
- Our special thanks to *Lake Guardian'* Captain and crew for technical assistance and for providing an excellent working environment during the cruise