

HABs State of the Science webinar series: HABs & Safe Drinking Water

Speakers:

Jason Huntley – University of Toledo

Allison MacKay – Ohio State University

Dragan Isailovic – University of Toledo

Glenn Lipscomb – University of Toledo

Jen Mou - Kent State University

Teresa Cutright – University of Akron

In partnership with:

GoToWebinar Housekeeping Items

 Submit your text questions and comments using the Questions Panel

 Note: This webinar is being recorded and will be posted on the HABs Collaboratory website

Great Lakes HABs Collaboratory

"A virtual laboratory for information sharing and collective actions to address HABs"

 Multidisciplinary group, 100+ members from different Agencies, Ministries, Colleges, Universities and Organizations across the Great Lakes

HABs State of the Science webinar series

- Result of the inaugural meeting of the HABs Collaboratory
 - Identified need for communication between researchers, and between researchers and managers
- Present on-going research projects related to HABs in the Great Lakes region
- Goals:
 - Improve communication
 - Knowledge transfer
 - Opportunities for collaboration

Ohio Sea Grant / OSU Stone Lab

- Managing 55 HABS related projects (~\$7,000,000)
 - 18 funded by Ohio Sea Grant
 - 5 funded by OSU's Field 2 Faucet initiative
 - 32 funded under the Ohio Department of Higher Education (OSU/UT; 18 vs. 14)
- Stone Lab Guest and Research Lecture Series
 - June 16th, 23rd, 30th, July 7th, 14th, 28th, and August 4th
 - 7pm -9pm
 - https://ohioseagrant.osu.edu/news/calendar
- Webinar: Forecast for HABs in Lake Erie in 2016
 - July 7th, 2:00 p.m.:
 https://ohioseagrant.osu.edu/news/calendar/2016/07/07/ken40/go-url
- 9/15/16 "State of Science" meeting in Toledo
 - Stranahan Theater
 - Modeling, BMPs, and Public Health-Water treatment
 - https://ohioseagrant.osu.edu/news/calendar/2016/09/15/o47km/understandingalgal-blooms

ISOLATION AND CHARACTERIZATION OF LAKE ERIE BACTERIA THAT DEGRADE THE MICROCYSTIN TOXIN MC-LR

Jason F. Huntley, Ph.D.
University of Toledo College of Medicine and Life Sciences

Project Overview

- Development of Microcystin Detoxifying Water Biofilters (Award R/HHT-5-BOR); Discovery of Enzymes and Pathways Responsible for Microcystin Degradation (Award R/PPH-4-ODHE)
- Jason F. Huntley, University of Toledo College of Medicine and Life Sciences
- Funding: Ohio Department of Higher Education
- Dates funded: 3/2015 6/2017; 4/2016 6/2018
- Hypothesis: (1) Naturally-occurring Lake Erie bacteria can degrade MC-LR, therefore biofilter development efforts will lead to efficient and cost-effective MC-LR removal methods; (2) Identification and characterization of MC-LR degradation pathways will lead to new technologies [i.e. enzyme drops or tablets] to remove MC-LR from drinking water

Approach

Summary of Findings

HABs Collaboratory

In Progress and Future Directions:

- Which individual clones are the best MC-LR degraders? Groups of 2 or 3?
- What enzymes/pathways do Lake Erie bacteria use to degrade MC-LR?
- Partner with Ohio biotech companies to develop biofilters and/or produce enzyme drops/tablets.
- Collaborations with other groups.
- Consultation with government agencies.

KINETIC MODELS FOR OXIDATIVE DEGRADATION OF CYANOTOXINS IN RAW DRINKING WATER

Allison A. MacKay – The Ohio State University

Project Overview

- Kinetic Models for Oxidative Degradation of Cyanotoxins in Raw Drinking Water
- Allison MacKay & Yu-Ping Chin (Ohio State);
 Dionysios Dionysiou & Soryong Chae (U. Cincinnati)
- ODHE Annex IV Nutrient/HAB Focus
- Utilities: Claremont County, Cincinnati, Oregon, Port Clinton, Toledo
- Objective: Produce tools to optimize oxidant dosages to achieve targeted cyanotoxin removals accounting for varied water quality parameters

Project background

- Pathogen removal: "Ct" = fixed log reduction
- Can "Ct" model work for cyanotoxins?
- Focus: permanganate; chlorine with UV
- Challenge: possible loss of oxidants to reaction with organic matter if oxidation of cyanotoxins (microcystin-LR, saxitoxin) slow

Approach

- Test waters: synthetic to control water quality parameters; HAB-afflicted raw drinking water sources
- Measure reaction of permanganate, chlorine, chlorine/UV with microcystin or saxitoxin with varied pH, temperature, alkalinity, organic matter
- Measure and relate organic matter reaction rates with oxidants to optical properties
- Build practitioner tool for estimating oxidant dosing to achieve target reductions of microcystin or saxitoxin with intake water quality parameters

HABs Collaboratory

- Questions/Needs: Rapid detection to couple with effective treatment
- Collaboration: Current state-of-science regarding water quality parameters and alternative treatment approaches

DEVELOPING AN LC-MS METHOD FOR QUANTIFICATION OF MICROCYSTINS

Dragan Isailovic

University of Toledo Department of Chemistry and Biochemistry Toledo, Ohio 43606

Dragan.Isailovic@utoledo.edu

Project Overview

- Title: Developing an LC-MS method for quantification of microcystins
- Author & Affiliations: Dilrukshika Palagama, Raymond West, and Dragan Isailovic
- Funding Source: ODHE, 2015-2017
- Project Location & Study years: University of Toledo, Dept. of Chemistry and Biochemistry
- Research hypothesis: Quantification of microcystins can be done accurately and reproducibly using an LC-Orbitrap-MS system.

Approach

- How will you meet your project objectives to answer your hypothesis?
- An HPLC was coupled to Orbitrap MS
- A sample preparation protocol for purification and preconcentration of MC-LR was developed
- HPLC conditions from EPA Method 544 used
- MC-LR was accurately quantified by LC-MS
- MCs in environmental samples will be analyzed

Summary of Findings

- What did you learn from your work?
- MC-LR was reproducibly quantified after spiking in tap water and in a mixture with MC-LA and MC-RR
- What happened that you didn't expect?
- Sample preparation procedures are important
- Relevant conclusions for water quality managers?
- Our LC-MS methods can quantify < 0.3 ppb of MC-LR reproducibly with and without preconcentration, and they can be useful for water quality analysis.

HABs Collaboratory

- What questions still need to be answered about HABs?
- Further validation of LC-MS methods on more MC standards are needed
- How can collaboration help your research?
- It will help validating our sample preparation procedures and LC-MS methods, and improve our contribution to study of water quality.

EVALUATING HOME POINT-OF-USE REVERSE OSMOSIS MEMBRANE SYSTEMS FOR CYANOTOXIN REMOVAL

Glenn Lipscomb – Chemical & Environmental Eng., University of Toledo Youngwoo Seo – Civil Eng., University of Toledo

Project Overview

- Evaluating Home Point-of-Use Reverse
 Osmosis Membrane Systems for Cyanotoxin
 Removal
- Pls: Glenn Lipscomb & Youngwoo Seo, UT
- Funding: Ohio Department of Higher Ed
- Location: Toledo, OH, June 2016 May 2018
- Home RO systems can effectively remove cyanotoxins from contaminated water

Home RO System

(www.lowes.com, www.espwaterproducts.com)

Project background

- PIs have extensive academic and industrial experience in membrane separation processes and water treatment
- Past projects include: biofilms for water treatment, charge mosaic membrane design, and membrane module design
- Students are involved in projects to provide water treatment systems in developing areas

Approach

- Establish relationships with partners
 - NSF International develop performance evaluation protocols, assess aging effects
 - Dow Water & Process Solutions source of membranes and test systems
 - National University of Singapore protocol development and collaboration with Singapore Public Utilities Board
- Develop a database of home RO products and manufacturers and select test units
- Evaluate effectiveness of hepatotoxin removal
- Evaluate long term removal and accelerated testing

HABs Collaboratory

- Future work:
 - Evaluate other home RO system components (other than RO cartridge) for cyanotoxin interactions
 - Optimize RO membrane for cyanotoxin rejection
 - Development of protocol for fouling control
- Collaboration critical to development, acceptance, and use of certification protocols

TAXA AND PATHWAY INVOLVED IN MICROBIALLY MEDIATED CYANOTOXIN DEGRADATION

Jen Mou

Kent State University

Project Overview

- Title: Isolation of microcystin degrading bacteria
- PI: Xiaozhen Mou, Kent State University
- Funding Source: Lake Erie Commission, Ohio Water Resource Center, Ohio Higher Education Board of Regents
- Project Location & Study years: Lake Erie, 2008-2017
- Research hypothesis
 - Lake Erie harbors a diverse group of bacteria that can degrade microcystins
 - Microbially mediated MC degradation in Lake Erie follow an alternative route other than mlrA-based pathway.

Great Lakes HABs Collaboratory

Diverse MC-degrading taxa and novel MC degradation pathway

MC-degrading bacteria isolates

- Lake Erie and Grand Lake St Marys
 - Water, Sediment
- Water Treatment Plants (Akron, Alliance, Sandusky)
 - Source Water, Backwash, Sludge

Got 45 confirmed, more under screening

Linking Science and Management to Reduce Harmful Algal Blooms

Effects of Environmental Factors

- Gram+ (Bacillus, Micromonospora) & G-(Pseudomonas, Ralstonia)
- MC-degraders degrade MCs faster at 35°C than 25°C.
- Most MC-degrading isolates grow between pH= 6-9
- No mlrA!
 - Transposon mutagenesis
 - Genome sequencing
- Biofilm formation study

Biological Filter Removal of Microcystin

- colonization of bacteria in water filtration systems
- community structure of bacteria
- Bacterial removal and degradation of MCs

HABs Collaboratory

Questions need to be answered:

- What is the role of heterotrophic bacteria played in HAB and MC dynamics?
- Whether efficiency of water treatment can be augmented by encouraging biodegradation?

How can collaboration help your research?

- Share the sampling effort, and samples
- Multidisciplinary approach
 - Chemical measurements
 - models

EVALUATION OF OPTIMAL ALGAECIDE SOURCES AND DOSAGES FOR OHIO DRINKING WATER SOURCES

Teresa J. Cutright—The University of Akron

Project Overview

- Evaluation of Optimal Algaecide Sources and Dosages for Ohio Drinking Water Sources
- Teresa Cutright, Don Ott, Lan Zhang, The University of Akron
- Jessica Glowczewski, Kenneth Crisp, City of Akron Watershed Division
- Ohio Sea Grant & Dept. Higher Education
- 4 watersheds in Northeast Ohio from April 2016-2018
- Each reservoir has a unique ecosystem
 - Different nutrient levels and cyanobacteria present
 - "Best" source and level of algaecide different

Project background

- Initial informal collaboration with watershed
- Interest in
 - Effective short term bloom treatment
 - Long term 'holistic' management of watershed
- Provide specific solution to specific cyanobacteria population

Approach

- Isolate cyanobacteria from water source
 - Enrich to 'bloom' level, add to reactor with source water, track with time
 - Repeat with 1 to 4 different algaecides
- Optimal dosage f(↓bloom count, ↓target, limitedno toxin release)
- Use optimal to determine residual concentration, application frequency & timing
- Watershed receive tailored source & level
 - Mitigate bloom potential without harm to ecosystem

HABs Collaboratory

- Research questions
 - Treatment optimization: cyanotoxin kinetics, cell lysis, etc.
 - Toxicity: acute, Saxitoxin, kinetics
 - Bloom dynamics: movement, triggers toxin release
- Collaboration essential:
 - Forming best research teams
 - Sharing of up to date knowledge
 - Increasing awareness

HABs & Safe Drinking Water

In partnership with:

Coming up next:

Ohio Sea Grant & Stone Lab public webinar: NOAA's Forecast for HABs in Lake Erie in 2016 Today July 7th 2-4pm

www.ohioseagrant.osu.edu/news/calendar/2016/07/07/ken40/go-url

HABs Blooms Detection, Compositions & Effects Tuesday, July 19 2016, 11 am-12:15 pm (EDT)

HABS & Public Health - TBD

HABs Blooms Monitoring & Forecasting – TBD

HABs Blooms Sources & Toxicity - TBD

HABs: Educate and Engage - TBD

To learn more about the HABs Collaboratory and the HABs State of the Science Webinar Series, visit us at:

http://glc.org/projects/water-quality/habs/

