

Reconnecting the Great Lakes Water Cycle

Selecting Least Cost Green Infrastructure

James W. Ridgway, PE September 29, 2015

Integrated Water Management??

IS GREEN INFRASTRUCTURE LESS COSTLY THEN GRAY INFRASTRUCTURE?

Cost of Green Infrastructure vs. Gray Infrastructure

479 case studies collect by American Society of Landscape Architects at the request of USEPA - www.asla.org/stormwateroverview.aspx

Evaluating Green Infrastructure? Not All green Infrastructure is Created Equally

- Volume Control
 - Infiltration Is it possible?
 - Reduce peak offsite runoff rates Is it necessary?
 - Divert flows from sewers of course!
- Define Capture Requirement
- Define Release Rate
- Identify Available Area

IS VOLUME THE DRIVING FORCE?

Incremental Cost per Annual Gallon Captured

(Milwaukee Metropolitan Sewerage District, 2013)

IS AREA THE DRIVING FORCE?

Incremental Cost per Square Foot Managed

(Milwaukee Metropolitan Sewerage District, 2013)

Note: The green infrastructure strategies supporting green alleys, streets, and parking lots are included in other strategies. The wetlands Green Infrastructure Strategy is encouraged but not quantified in the plan.

Stand-alone Costs (per green infrastructure SF and per SF managed) and the Relationship to Incremental Costs

(Milwaukee Metropolitan Sewerage District, 2013)

Green Infrastructure Strategy	Stand-alone Cost (\$/SF)	Loading Ratio (Ratio of Area Managed to Area of GI)	Stand-alone Cost (\$/SF Managed)	Incremental GI Cost Compared to Stand- alone Cost	Description of Cost Assumption
Green Roofs ¹	\$11.50	1.0	\$11.50	43%	Median PWD cost (\$11.50/SF)
Rain Gardens	\$10.00	12.0	\$0.83	70%	Middle of FCGS range rounded up to \$10/SF
Stormwater Trees ²	\$0.80	0.5	\$1.58	50%	FCGS cost
Bioretention/ Bioswale	\$24.00	12.0	\$2.00	70%	Average between PWD ³ and SUSTAIN ⁴ demonstration project
Native Landscaping/Soil Amendments	\$0.11	1.0	\$0.11	60%	Middle of FCGS ⁵ range, rounded up to nearest \$1,000
Porous Pavement	\$10.00	4.0	\$2.50	70%	\$10/SF, approximately 90 percent of median PWD costs
44-gallon Rain Barrels ⁶	\$120 (each)	N/A	\$0.34	90%	Middle of FCGS range rounded up to nearest \$10
1,000-gallon Cisterns ⁷	\$5,000 (each)	N/A	\$0.78	90%	\$5/gal., middle of FCGS range for 1,000-gal cistern

¹Incremental cost of green roofs set to 43 percent to match MMSD's \$5/SF (\$217,800/acre) green roof incentive program.

²Trees are assumed to have an average 10-ft canopy radius (314 SF), with 50 percent assumed to be overhanging impervious area.

³PWD is Philadelphia Water Department.

⁴SUSTAIN is from (MMSD 2011) Determining the

Potential of Green Infrastructure to Reduce Overflows acre of roof.

in Milwaukee.

⁵FCGS is "Fresh Coast Green Solutions" (MMSD 2009). ⁶Each rain barrel is assumed to manage 350 SF of rooftop; therefore, 124.5 barrels are required for 1 acre of roof.

⁷Each 1,000-gallon cistern is assumed to manage 6,500 SF of impervious area; therefore, 6.7 cisterns are required for 1 acre.

Costs and Cumulative Volume of Stormwater Removed from the CSO System through Various Gray and Green Strategies (Green in Bold) (Odefey, 2012)

WHAT ARE THE POLITICAL DRIVERS?

Elected Officials Priorities

(a.k.a. The Political Drivers)

- Clean Drinking Water
 - Don't run out of water
 - No Nitrates in Drinking Water (Blue Baby Syndrome)
 - No Polluting Surface Source Water (Toledo Crisis)
- No Flooding
- Keep Sewage out of Recreational Waters
- General Water Quality Improvement
- Quality of Life/Economic Development
- Beyond that details may confuse the subject

WHAT ARE THE TECHNICAL DRIVERS?

Public Works Priorities

(a.k.a. The Technical Drivers)

- Volume Management
 - No Flooding
 - Reduce Flashy Flows
 - Limit Erosion
- Pollutant Removal
 - Bacteria
 - Oxygen Demanding Materials
 - Phosphorous/Nitrogen
 - Other Pollutants
- Green Space
- Quality of Life

WHAT DO ELECTED OFFICIALS AND PUBLIC SERVANTS BOTH WANT?

Green Infrastructure is Infrastructure To Protect the Great Lakes We Must Restore the Hydrology

- We must continues to control/minimize flooding
- We must remove sources of sewage
- We need to lower peak flows / raise low flows
- We want to increase infiltration/ raise groundwater
- To minimize cost we must combine grey with green infrastructure for optimal performance

WATER RESOURCES IMPACT ASSESSMENT TOOL

Water Resources Impact Assessment Tool

- Prioritize the challenges
- Select Design Drivers
- Identify Funding Requirements/Opportunities
- Minimize Cost
- Maximize Benefit
- Aggregate Solutions
- Finance Large Scale Implementation

Step 1: Calculating Runoff

	Establish the Rainfall Event								
	Click here for directions				Rain Even	t:			
	_				1.5	- hes			
	Tip				1	er Data r	iere		
					1.5 2				
	Enter Land Cover Areas				2.5				
	Click here for directions		Land Cover Ke	ey	3.5	oject Tot	tals		
						Site Area (a	c)	5.60	acres
	Тір					Impervious	Area (ac)	3.37	acres
						Runoff Volu	me (ft*)	18,404	cubic feet
	Enter	Data Here	_	-					
	+	• •	*	+		CN		D ((D
	Land Cover	Londiti on	Soil Type	Area (sf)	Area (ac)	(TR-55)	S	Q (in)	fft ³)
1	Existing Building	N/A	N/A	60,000	1.377	98	0.2	1.28	6,400.71
2	Proposed Building	N/A	N/A	30,000	0.689	98	0.2	1.28	3,200.36
3	Existing Paved Parking Area	N/A	N/A	10,000	0.230	98	0.2	1.28	1,066.79
4	Proposed Paved Parking Area	N/A	N/A	10,000	0.230	98	0.2	1.28	1,066.79
5	Existing Paved Walkway	N/A	N/A	1,500	0.034	98	0.2	1.28	160.02
6	Proposed Paved Walkway	N/A	N/A	500	0.011	98	0.2	1.28	53.34
7	Existing Roadway	N/A	N/A	25,000	0.574	98	0.2	1.28	2,666.96
8	Proposed Roadway	N/A	N/A	10,000	0.230	98	0.2	1.28	1,066.79
9	Open Space	Poor	С	5,000	0.115	86	1.6	0.49	205.08
10	Pasture	Fair	В	2,500	0.057	69	4.5	0.07	14.79
11	Meadow	N/A	С	1,500	0.034	71	4.1	0.10	12.23
12	Brush	Poor	D	3,000	0.069	83	2.0	0.38	94.70
13	Woodland/Grassland	Good	С	10,000	0.230	72	3.9	0.11	94.27
14	Woods	Good	С	50,000	1.148	70	4.3	0.08	349.38
15	Bare Soil	N/A	D	25,000	0.574	94	0.6	0.94	1,951.41

Reconnecting the Great Lakes Water Cycle

GUELPH, ONTARIO (AN EXAMPLE)

South End Community Park

Comparing Volume Captured to Area Required

вмр	Ponding Depth (inches)	Planting Material Depth (inches)	Stone Base Depth (inches)	Volume (CF) Stored per 100 SF of BMP
Rain Garden	6	12	6	88
Blue Roof	4	0	0	33
Intensive Green Roof	0	18	0	30
Extensive Green Roof	0	4	0	7

South End Community Park Calculating Site-wide Runoff

Rainfall =	1 inch	Rainfall =	1	inches							
			Cover Type	Soil Type	Area (sf)	Area (ac)	CN (TR-55)	S	Runoff, Q (in)	Runoff Volume, V (ft3)	Total Runoff Volume (ft3)
		Ev. Duilding	Impervious	D	85,437	1.961	98	0.2	0.8	5,631.06	E (21.04
		EX. Dullulity	Urban Compact	D	-	0.000	84	1.9	0.0	-	3,031.00
		Ex. Darking & Drives	Impervious	D	76,037	1.746	98	0.2	0.8	5,011.48	E 206 02
		EX. Faiking & Drives	Urban Compact	D	24,922	0.572	84	1.9	0.2	315.35	0,520.05
		Track & Football	Impervious	D	40,643	0.933	98	0.2	0.79	2,678.73	1 120 27
			Urban Compact	D	118,674	2.724	84	1.9	0.15	1,501.64	4,100.37
		Basketball, Tennis &	Impervious	D	31,041	0.713	98	0.2	0.79	2,045.88	2 045 88
		Snlach Dad	Urban Compact	D	-	0.000	84	1.9	0.00	-	2,045.00
Proposed Im Rec	Imp	pervious	pervious	D	23,482	0.539	98	0.2	0.79	1,547.67	1 547 67
			ban Compact	D	-	0.000	84	1.9	0.00	-	1,547.07
		pervious	D	-	0.000	98	0.2	0.00	-	1 516 27	
	Urban	Urban Compa	n Compact	ban Compact	D	119,838	2.751	84	1.9	0.15	1,516.37
Centre			n compuet	pervious	D	-	0.000	98	0.2	0.00	-
			ban Compact	D	119,180	2.736	84	1.9	0.15	1,508.04	1,500.04
		ofthall #2	Impervious	D	-	0.000	98	0.2	0.00	-	1 506 70
		3000dil #2	Urban Compact	D	119,074	2.734	84	1.9	0.15	1,506.70	1,500.70
		Proposed Poc Contro	Impervious	D	168,283	3.863	98	0.2	0.79	11,091.33	11 001 33
		Floposed Rec Centre	Urban Compact	D	-	0.000	84	1.9	0.00	-	11,091.55
		Proposed Parking	Impervious	D	292,391	6.712	98	0.2	0.79	19,271.15	10 /7/ 02
		r oposed r arking	Urban Compact	D	16,104	0.370	84	1.9	0.15	203.77	17,474.72
	L										
								1	.1,09 <u>1</u> .	.33	

South End Community Park

South End Community Park Identifying Least Cost BMPs

		Location BMP		ВМР		ВМР		Unit	Un	it Price	C	Construction Cost	N	Annual Iaintenance Cost	Lov	vest Year 1 Cost
			Bioinfiltration		6,500	SF	\$	12.00	\$	78,000.00	\$	3,250.00				
	1	Existing Building	Green Roof		85,437	SF	\$	15.00	\$	1,281,556.50	\$	35,200.09	Ś	58.416.75		
			Blue Roof	Blue Roof		SF	\$	4.00	\$	341,748.40	\$	17,087.42	÷,	,		
			Cistern		5631.0584	CF	\$	10.00	\$	56,310.58	\$	2,106.16				
			Bioinfiltration		6100	SF	\$	12.00	\$	73,200.00	\$	3,050.00				
	2	Existing Drives & Parking	Pervious Concrete		13000	SF	Ş	7.00	Ş	91,000.00	Ş	2,080.00	\$	39,280.16		
			Pervious Pavers			SF	Ş	9.00	Ş	117,000.00	Ş	468.00				
	_	Treak Q Feethell	Underground Stora	ige	5326.8262	CF	Ş	7.00	Ş	37,287.78	Ş	1,992.37	ć	60.000.00		
	3	Packethall Splach Dad	Bioinfiltration		_			00	ې د	57,611011				5000		
	4	Tennis	Pervious Concrete		-	Size		00	ې د	28, CO	ns	truction	C	OSt .00		
		Bioinfiltr	ation		6	,100		00	\$ \$	21, 26,		\$73,200)	.00		
kisting		Pervious Co	oncrete		- 13	3,000)	00	ې \$ \$	21, 21, 21,		\$91,000)	.00 .00		
arking		Pervious I	Pavers		13	3,000)	00	\$ \$ \$	21, 156, 2 524	¢	\$117,000	C	<u>.00</u>		
		Underground Storage		5,326		00	0 \$ 2,324, 0 \$ 336, 0 \$ 110,		\$37,287		,	.78				
			Bioinfiltration		23000	SF	Ş	12.00	Ş	276,000.00	Ş	11,500.00		_		
	10	Rec Parking	Pervious Concrete		50000	SF SF	ې د	7.00	Ş	350,000.00	Ş	8,000.00	\$:	143,608.55		
			Underground Stora	ge	19474.917	CF	ې \$	7.00	ې \$	136.324.42	ې \$	7.284.13				
				00			Ŧ		Ŧ		Ŧ	.,_010				
									_							

E D

Reconnecting the Great Lakes Water Cycle

Stevenson Street

Identifying Least Cost BMPs

Location	ı	ВМР		Unit	Feasibility	Unit Price	Construction Cost	Annual Maintenance Cost	Lov	west Year 1 Cost
		Bioinfiltration	10,000	SF	1	\$ 12.00	\$ 120,000.00	\$ 3,400.00		
Stevensor	n N	Pervious Concrete	21,000	SF	1	\$ 7.00	\$ 147,000.00	\$ 3,360.00	Ś	89.915.08
		Pervious Pavers	21,000	SF	1	\$ 9.00	\$ 189,000.00	\$ 756.00	Ŧ	00,0 20100
		Underground Storage	8,667	CF	1	\$ 10.00	\$ 86,673.39	3,241.68	_	
		Bioinfiltration Pervious Concrete	1,700 <u>3.4</u> 00	s s	Size	2.00	Construc	ction Cost	\$	10,410.49
		Bioinfiltration	00 12	S C	10,000).00 7.00	0.00 \$120,000 2.00 \$147,000			
Stevenson	Р	Pervious Concret	e ⁰⁰ 00	S S	21,000	2.00 7.00				
Ν		Pervious Pavers	00 72	s C	21,000).00 7.00	\$189	9,000	Ş	40,551.25
	Un	derground Stora	age 80	S S	8,667	2.00 7.00	\$86	673	\$	593.26

Sized to Capture 1" of Rain

