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1. Introduction
The Michigan Institute for Data and AI in Society (MIDAS) and the Cooperative Institute 
for Great Lakes Research (CIGLR) hosted a summit in Ann Arbor, Michigan, from 22 to  
23 July 2024. The event brought together 22 scientists from across the country to envi-
sion how machine learning and artificial intelligence might be used to address some of 
the most pressing challenges facing Great Lakes science, restoration, and management 
over the next decade.

2. Background
The Laurentian Great Lakes—comprising Lakes Superior, Michigan, Huron, Erie, and 
Ontario—are the largest group of freshwater lakes in the world by the total area, holding 
approximately 21% of Earth’s surface freshwater. In addition to their considerable size, 
the Great Lakes serve as a critical resource for over 40 million people in the United States 
and Canada. They provide drinking water, support commercial and recreational fishing, 
facilitate transportation and commerce, and offer opportunities for tourism, recreation, and 
connecting with nature. The Great Lakes also enrich regional biodiversity by supporting 
a wide range of interconnected ecosystems. Managed cooperatively by two neighboring 
countries, this dynamic system represents a case study for international water and ecosys-
tem management and serves as a key testbed for understanding aquatic, terrestrial, and 
climatological systems globally.

Many different local, state, federal, and tribal government agencies, nonprofit organi-
zations, academic institutions, private entities, and community stakeholders are involved 
in the complex scientific and management landscape of the Great Lakes. For example, the  
International Joint Commission (IJC) coordinates water management and water quality efforts 
between the United States and Canada, reflecting their mutual responsibilities for water use 
and safety. A variety of federal agencies, regional consortia, and national laboratories have 
developed regional, state-of-the-art monitoring networks that include buoys, vessel fleets, 
flux towers, and remote sensing capabilities. Notable organizations include the U.S. Environ-
mental Protection Agency, Environment and Climate Change Canada, the National Oceanic 
and Atmospheric Administration’s (NOAA) Great Lakes Environmental Research Laboratory 
(GLERL), the Cooperative Institute for Great Lakes Research (CIGLR), and the Great Lakes  
Observing System (GLOS). Initiatives such as the Great Lakes Restoration Initiative, 
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CoastWatch, the Synthesis, Observations, and Response System (SOAR), and Submerged 
Aquatic Vegetation (SAV) Mapping also play significant roles. The high concentration of 
observational networks in the region sets some parts of the Great Lakes apart as some of 
the best-monitored, large open water regions in the world. These efforts underscore the 
collaborative approach taken by multiple stakeholders to address pressing challenges fac-
ing the Great Lakes.

For example, despite considerable progress in recent years, accurate forecasting for the Great 
Lakes region remains a key challenge. Changes in lakewide water levels are set by a small 
residual of several large fluxes that can be difficult to forecast accurately (i.e., evaporation, 
precipitation, runoff). Even small errors in the estimates of these fluxes can lead to consider-
able errors in the water level forecast. As climate change continues to alter atmospheric ther-
modynamics and dynamics, projecting the net effect on the Great Lakes remains challenging. 
Evaporation tends to lower water levels and precipitation tends to raise them—both processes 
will be affected by climate change, and it is far from clear which one will dominate within a 
given forecast period. Accurate forecasting of ice conditions and harmful algal blooms (HABs) 
are also challenging.

Many Great Lakes datasets and studies are watershed specific and small scale, but under-
standing the entire Great Lakes—much like any large basin on Earth—requires a more holistic, 
integrated approach that considers the Great Lakes as a single system. Machine learning (ML) 
and artificial intelligence (AI), underpinned by the necessary data and infrastructure, present 
a unique opportunity for considerable advancements in forecasting, as well as other areas 
such as process-based understanding and observing network design.

Machine learning and artificial intelligence are transforming environmental science. 
For example, the field of oceanography has been revolutionized by ML/AI, both in terms 
of modeling capacity and scientific understanding (Sonnewald et al. 2021). Atmospheric 
science is similarly evolving, especially in the weather forecasting industry (Eyring et al. 
2024). For example, the European Centre for Medium-Range Weather Forecasts (ECMWF) 
now runs a data-driven forecast system (Lang et al. 2024). ML/AI could also help improve 
relevant large-scale theories for hydrologic simulations and forecasting (Nearing et al. 2021). 
The Great Lakes research and management community should engage with these emerging 
toolkits in a coordinated and systematic manner to effectively achieve the greatest impact. 
Given the complexity of the science involved and the multifaceted nature of the Great Lakes 
community, we need a strategic approach.

3. CIGLR summit: AI horizons
The “AI Horizons” summit represents a strategic effort to envision the integration of ML/AI 
into Great Lakes science, management, and restoration. CIGLR Summits convene groups of 
20–30 invited experts meeting for 2–3 days to summarize the state of knowledge and recom-
mend future directions on Great Lakes problems that span decadal time scales. On 22 and  
23 July 2024, CIGLR hosted a summit on the University of Michigan campus, specifically in 
the Samuel T. Dana Building, which is home to the School for Environment and Sustainability 
(SEAS). The summit brought together 22 researchers from across the country. The organizers 
identified two primary goals for the summit: creating a framework for a Great Lakes ML/AI 
community of practice and developing a decadal vision on how ML/AI could transform Great 
Lakes science. Over the 2-day summit, participants made progress on scaffolding and draft-
ing up the vision document and engaged in foundational conversations on building a Great 
Lakes–centric community of practice.

The first day of the summit began with scene-setting talks. The organizers emphasized the 
importance of collaboration, stating that the success of the summit, like any collaborative 
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endeavor, relies on the collective experience, energy, focus, and goodwill of the participants. 
To harness the collective intelligence of the participants, organizers implemented several 
tools and practices:

• Shared, online notes documents that all summit participants could edit.
• A group Zotero library, allowing for group management of relevant literature, citations, 

and bibliographies.
• Dynamically defined working groups that evolved throughout the summit in response to 

participant feedback.
• A “parking lot” for noting important topics that fell outside the formal agenda but  

warranted future discussion.
• Web-based Q&A polls throughout the summit via the “Slido” tool.
• Dedicated blocks of writing time, as part of the program, to allow for informal collaborative 

conversation, individual focus, and codevelopment of text to articulate ideas.

Jing Liu, the Executive Director of MIDAS, gave a brief overview of AI in science and  
engineering. She noted that data and AI are becoming essential tools in many domains, 
transforming both disciplinary and interdisciplinary research. This trend calls for new sup-
port mechanisms, such as new institutes. As one such institute, MIDAS is currently focused 
on enabling the adoption of AI methods in various research domains, promoting responsible 
and ethical AI, and exploring new ways of cross-sector collaboration with academia, industry, 
and government. Liu highlighted that the current academic research model has struggled to 
implement AI at the needed scale and pace to address pressing scientific problems, particularly 
in comparison to industry, where resources and talent tend to be concentrated.

In a second scene-setting talk, Dani Jones (CIGLR) echoed definitions of ML and AI as 
formulated by Liu. Specifically, “AI” refers to machines and/or algorithms that can perform 
tasks that normally require human intelligence, such as learning, reasoning, using and 
comprehending language, decision-making, and so on. Under that definition, “ML” may be 
considered a subset of AI focused on data-driven learning and prediction, which does have 
some overlap with traditional statistics.

Jones gave a brief overview of how machine learning has shaped the field of Earth system 
science. In oceanography, there have been considerable advances in subgrid scale param-
eterization and equation discovery (Bolton and Zanna 2019; Zanna and Bolton 2020), novel 
data analyses using unsupervised learning (Sonnewald et al. 2019, 2020), and hypothesis 
generation (Sonnewald et al. 2021). To set the stage to consider a framework that would lead 
into a Great Lakes–centric AI/ML community of practice, Jones shared examples of other 
centers of practice. In atmospheric science, organizations such as the Cooperative Institute for 
Research in the Atmosphere (CIRA) have pioneered the use of ML/AI in detection, inference, 
and estimation from satellite-based remote sensing products (Lagerquist and Ebert-Uphoff 
2022). Large-scale initiatives and institutes like the NSF AI Institute for Research on Trust-
worthy AI in Weather, Climate, and Coastal Oceanography (McGovern et al. 2024) and the 
NASA JPL Science Understanding through Data Science (SUDS) initiative work to integrate 
ML/AI into Earth system sciences, emphasizing domain knowledge, trustworthiness, inter-
pretability, and explainability.

Jones emphasized that Great Lakes science and management is just starting to use ML 
and is still in the early stages of conceptualizing how AI might be used. There have been 
ML-driven advances in predicting wave heights (Hu et al. 2021), ice cover (Abdelhady and 
Troy 2024), and water levels. There have also been advances in autonomous underwater 
sampling (Zhang et al. 2024) and model emulation and uncertainty quantification (Pringle 
et al. 2024). At present, there are efforts at GLERL and CIGLR to use data-driven methods to 
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improve water level forecasting and improve understanding of the drivers of HABs. There 
are undoubtedly more efforts in the research community of which the authors are unaware, 
emphasizing the need for a central hub to coordinate these efforts and integrate ML/AI into 
Great Lakes science more effectively, supporting research, the exploration of new methods, 
training, and other relevant knowledge sets.

Dynamic working groups. Before the summit, the organizers proposed the following working 
groups: 1) modeling and forecasting capacity, 2) observing network design, 3) data pipelines 
and data assimilation, and 4) hazards and risks. An initial survey revealed that interest in 
these working groups was unbalanced. The overwhelming majority of participants selected 
“modeling & forecasting capacity” as their first choice, while there was very little interest in 
“hazards and risks.” In response, the organizers split the modeling & forecasting capacity 
group into two: one focusing on predictive modeling and the other on operationalization and 
applications. The initially proposed “observing network design” and “data pipelines and data 
assimilation” groups were combined into a single group, and a new “generative AI” group 
was established. Participants then self-sorted into the working groups. During the morning 
working group discussions, participants focused on their respective topics. The groups high-
lighted issues, identified opportunities, and made recommendations to improve Great Lakes 
research and management through ML/AI:

• Modeling and Forecast Capacity A: Predictive Models and Techniques. This group focused 
on pathways to develop and refine predictive models using machine learning, address 
technical challenges, enhance model accuracy, and explore innovative methodologies. 
Key discussion points included the following:
⚬ Consideration of data from a statistical point of view: independence of samples, suf-

ficiently large spatial datasets, and time series.
⚬ Opportunities for linking highly time-resolved mechanistic models with less frequently 

sampled biological data to improve beach closures and understanding of harmful algal 
blooms. The group also emphasized leveraging physics-informed models while address-
ing the issue of “black box” models and various data characteristics depending on the 
application, such as dimensionality, sampling frequency, and predictive time scales.

⚬ Challenges such as overfitting, enhancing model accuracy, and trade-offs between ac-
curacy and generalizability.

• Modeling and Forecast Capacity B: Operationalization and Applications. This group ad-
dressed the practical implementation of ML approaches in real-world scenarios, supporting 
decision-making processes and engaging stakeholders. Discussion points included the 
following:
⚬ Forecasting at various time scales (short-term, subseasonal to seasonal, and years to 

decades).
⚬ Using ML to better reconstruct past and current conditions (hindcast/nowcasting).
⚬ Supporting large-scale infrastructure operation and policy with reinforcement learning 

and global approximators.
⚬ Key challenges included stakeholder engagement and building trust while explaining 

and transparently communicating ML-based operations to the public and operators.

• Generative AI: This group focused on exploring the potential of generative AI in Great Lakes 
science, restoration, and management. They discussed the following:
⚬ The strengths and weaknesses of current technologies, such as integrating physics into 

cost functions.
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⚬ Potential for generative AI to fill in data gaps, considering that AI might not extrapolate 
well due to reliance on training datasets.

⚬ Highlighting how physics-based optimization could help capture extremes and incor-
porate domain expertise.

• Data Pipelines and Observing Network Design: This group looked at enhancing data in-
tegration and access, data ingestion pipelines, and mechanisms for AI to answer relevant 
questions for observation systems. They emphasized the following:
⚬ The importance of accessible, robust, and analysis-ready data for ML/AI development.
⚬ Utilizing AI for data curation, quality control, creating metadata, and supporting public 

decision-making through natural language processing.
⚬ Addressing data sparsity, temporal issues, and ensuring accurate AI constraints by 

leveraging physics-informed models.

Following the morning working group breakout discussions, the participants reconvened 
to report on their discussions. It was decided that the working groups should be reorganized 
dynamically again by the participants before the afternoon session. The reorganized working 
groups aligned with the planned sections of the paper, specifically the following:

• Philosophy, context, and problem formulation: Refining research questions, theoretical 
frameworks, and contextualizing challenges unique to the Great Lakes.

• Benefits of AI in addressing Great Lakes challenges: Exploring specific applications and 
improvements brought by ML/AI.

• Connecting with the wider landscape, best practices, and interoperability: Ensuring align-
ment with global initiatives and developing best practices.

The second day of the summit was dedicated to drafting the perspectives manuscript and 
developing the community of practice framework. Short breakout sessions allowed teams 
to refine sections of the manuscript, integrating insights from the previous day. Alternating 
between full-group discussions and focused writing sessions helped ensure alignment and 
coherence across different sections.

By late morning, outlines of key sections were ready for review. The generative AI group 
contributed insights into the strengths and weaknesses of current ML/AI technologies in 
meteorology, emphasizing the rapid growth in this discipline. They noted the potential for 
tailoring cost functions to capture physics better and using AI to extend data in data-sparse 
regions by leveraging physical laws. This approach motivates the collection of more data to 
enhance AI capabilities. Current technologies often struggle with capturing extremes due to 
issues with extrapolation, which is crucial for climate change projections. Physics-based op-
timizations can help incorporate domain expertise and potentially address these challenges.

A collaborative editing session followed, where participants provided feedback and in-
tegrated complementary ideas. The summit concluded with final remarks, reinforcing the 
importance of continued collaboration and outlining the next steps for the Great Lakes AI 
Laboratory and planned publications.

4. Summit outcomes
The summit aims to ultimately produce a perspectives paper on the effective integration of 
ML/AI into Great Lakes science and management. The work on the perspectives paper, which 
started during the summit, has continued post-summit, with participants engaging in writing 
groups and using collaborative tools to ensure coherence and comprehensive coverage of the 
identified themes and references.
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a. Building up the Great Lakes AI community. The second goal of the summit was to develop 
strategies, tools, and practices for fostering a collaborative AI research community in the 
Great Lakes region. As highlighted during the summit discussions, this effort should include 
the following:

• A framework for a Great Lakes ML/AI community of practice: Establishing a structured ap-
proach to foster accessible, analysis-ready data [e.g., drawing inspiration from community 
initiatives like Pangeo (Odaka et al. 2020)] and reproducibility of both code and datasets. 
It was mentioned that the Great Lakes research community may not have the scale needed 
to create its own large-scale infrastructure; it may be more beneficial to join existing larger 
efforts, introducing a specific subfocus on the Great Lakes.

• Community engagement: Promoting participation and collaboration across different 
stakeholders, leveraging diverse expertise and perspectives. This could take the form of 
sessions at national and international conferences (e.g., the American Geophysical Union’s 
Fall Meeting).

• Balancing act: Addressing community-building efforts while mitigating concerns of com-
munication burnout. This includes respecting the limited bandwidth of individuals and 
prioritizing sustainable development.

• Support structures: Implementing sustainable support structures to maintain engagement 
and ensure continuous collaboration. This includes developing mechanisms for ongoing 
communication, resource sharing, and collaborative efforts.

b. Stakeholder engagement and trust building. For successful integration, there must be a 
focus on engaging stakeholders and building trust in ML/AI systems. Transparent commu-
nication and explaining model outputs effectively are critical for gaining public and stake-
holder trust.

5. Next steps
a. Perspectives manuscript. Summit participants will draft and submit a perspectives article 
on the future of ML and AI in Great Lakes science and management. This manuscript, being 
developed by all summit attendees with additional expert input, will serve as a foundational 
document.

b. Launch of the Great Lakes AI laboratory. The newly launched Great Lakes AI Laboratory 
will serve as a focal point for integrating ML and AI into Great Lakes research, manage-
ment, and restoration, addressing the pressing need for advanced data pipelines, analytics, 
and predictive modeling in the region. Although CIGLR—consisting of a research institute 
and a Regional Consortium of academic, nongovernmental organization, and private sector 
partners—and NOAA GLERL will serve as the initial hosts for this initiative, the Great Lakes 
AI Laboratory is designed to be an open, collaborative community. We invite anyone with 
research interests or a stake in Great Lakes science, management, and restoration, as well as 
environmental machine learning experts looking to engage with the Great Lakes community, 
to join us. Specific platforms and events that the Great Lakes AI Laboratory will use may 
include a website, Slack channel, GitHub organization, mailing list, open workshops, and 
hackathons. By developing advanced predictive models, facilitating data integration, pro-
viding training and resources, and encouraging interdisciplinary collaboration, the Great 
Lakes AI Laboratory seeks to bridge the gap between data science and environmental sci-
ence in the Great Lakes, fostering innovation and enhancing the region’s capacity to address 
its unique challenges. We invite interested parties to join us as part of the Great Lakes AI 
Laboratory GitHub organization (https://github.com/great-lakes-ai-lab).
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Executive Summary  
 
The Energy Act of 2020 calls for the U.S. Department of Energy to make available to the public 
an update to Lawrence Berkeley National Laboratory’s prior study entitled United States Data 
Center Energy Usage Report (2016). This report, designed to meet that Congressional request, 
estimates historical data center electricity consumption back to 2014, relying on previous 
studies and historical shipment data. This report also provides a scenario range of future 
demand out to 2028 based on new trends and the most recent available data. Figure ES-1 
(below) provides an estimate of total U.S. data center electricity use including servers, storage, 
network equipment, and infrastructure from 2014 through 2028.  
 

 
 
Figure ES-1. Total U.S. data center electricity use from 2014 through 2028. 
 
As Figure ES-1 shows, U.S. data center annual energy use remained stable between 2014–
2016 at about 60 TWh, continuing a minimal growth trend observed since about 2010. In 2017, 
the overall server installed base started growing and Graphic Processing Unit (GPU)-
accelerated servers for artificial intelligence (AI) became a significant enough portion of the 
data center server stock that total data center electricity use began to increase again, such that 
by 2018 data centers consumed about 76 TWh, representing 1.9% of total annual U.S. 
electricity consumption. U.S. data center energy use has continued to grow at an increasing 
rate, reaching 176 TWh by 2023, representing 4.4% of total U.S. electricity consumption.  
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With significant changes observed in the data center sector in recent years, owing to the rapid 
emergence of AI hardware, total data center energy use after 2023 is presented as a range to 
reflect various scenarios. These scenarios capture ranges of future equipment shipments and 
operational practices, as well as variations in cooling energy use. The equipment variations are 
based on the assumed number of GPUs shipped each year, which depends on the future GPU 
demand and the ability of manufacturers to meet those demands. Average operational 
practices for GPU-accelerated servers represent how much computational power, and how 
often AI hardware in the installed base is used, to meet AI workload demand. Cooling energy 
use variations are based on scenarios in cooling system selection type and efficiency of those 
cooling systems, such as shifting to liquid base cooling or moving away from evaporative 
cooling. Together, the scenario variations provide a range of total data center energy estimates, 
with the low and high end of roughly 325 and 580 TWh in 2028, as shown in Figure ES-1. 
Assuming an average capacity utilization rate of 50%, this annual energy use range would 
translate to a total power demand for data centers between 74 and 132 GW. This annual 
energy use also represents 6.7% to 12.0% of total U.S. electricity consumption forecasted for 
2028. 
 
Historically, data center electricity use increased substantially from 2000–2005, roughly 
doubling during that period. During the early and mid-2010s, a shift from on-premise data 
centers to colocation or cloud facilities helped enable efficiency improvements that allowed data 
center electricity use to remain nearly constant at a time when the data center industry grew 
significantly, with a large expansion of data center services. The efficiency strategies that 
allowed the industry to avoid increased energy needs during this period included improved 
cooling and power management, increased server utilization rates, increased computational 
efficiencies, and reduced server idle power.  
 
While many of these efficiency strategies continue to provide significant energy efficiency 
improvements in data center design and operation, the expansion of data center services into 
areas that require new types of hardware has ended the era of generally flat data center energy 
use. Most notably, the rapid growth in accelerated servers has caused current total data center 
energy demand to more than double between 2017 and 2023, and continued growth in the use 
of accelerated servers for AI services could cause further substantial increases by the end of 
this decade. The current and possible near-future surge in energy demand highlights the need 
for future research to understand the early-stage, rapidly changing AI segment of the data 
center industry and identify new efficiency strategies to minimize the resource impacts of this 
growing and increasingly significant sector in our economy.  
 
Areas of future research identified in this report include benchmarking initiatives, collaborations 
with electric utilities, and technology development, all of which would be furthered by greater 
transparency in data center energy use, as the lack of data availability significantly limits the 
analysis in this report. The estimates in this report are based on a “bottom-up” energy use 
model that calculates total electricity use from an installed base of data center equipment.  This 
method avoids overestimation that can be caused by tracking data center load for projects that 
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have not yet selected a power provider, but requires many inputs and assumptions developed 
from limited publicly available data, proprietary market analyst data, and review by industry 
representatives and stakeholders. The lack of direct energy data available in a sector with 
rapidly evolving technologies limits the analysis in this report, especially when trying to 
understand and estimate future energy demand scenarios. 
 
The results presented here indicate that the electricity consumption of U.S. data centers is 
currently growing at an accelerating rate. Figure ES-1 shows a compound annual growth rate of 
approximately 7% from 2014 to 2018, increasing to 18% between 2018 and 2023, and then 
ranging from 13% to 27% between 2023 and 2028. This surge in data center electricity 
demand, however, should be understood in the context of the much larger electricity demand 
that is expected to occur over the next few decades from a combination of electric vehicle 
adoption, onshoring of manufacturing, hydrogen utilization, and the electrification of industry 
and buildings. Research initiatives are needed not merely to identify strategies to meet data 
centers’ future energy needs, but also to help stakeholders use this relatively near-term 
electricity demand for data centers as an opportunity to develop the leadership and strategic 
foundation for an economy-wide expansion of electricity infrastructure.  
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1 Introduction 
Aqueous film-forming foam (AFFF) is a highly effective firefighting 
product intended for fighting high-hazard flammable liquid fires. 
AFFF products are synthesized by combining hydrocarbon foaming 
agents with fluorinated surfactants to achieve a product that has 
been used at military installations, civilian airports, petroleum 
refineries, bulk storage facilities, and chemical manufacturing plants 
(Hu et al. 2016; CONCAWE 2016).  

This fact sheet targets local, state, and federal regulators and tribes 
in environmental, health and safety roles, as well as AFFF users at 
municipalities, airports, and industrial facilities, and is not intended 
to replace manufacturer specifications or industry guidance for 
AFFF use. The information provided is a high-level summary on 
AFFF use, the associated hazards, and how to reduce and 
eliminate potential harm to human health and the environment. 
Additional information is available in the Guidance Document. 

2 What is AFFF?  
Class B firefighting foams are commercial surfactant solutions that 
are designed and used to combat Class B flammable fuel fires. For 
the purpose of this fact sheet, Class B foams can be divided into two broad categories: fluorinated foams that contain 
PFAS and fluorine-free foams (F3) that do not contain PFAS.  

There are six groups of Class B foams that contain PFAS and four groups of Class B foams that do not. Figure 1 
illustrates all categories of Class B foams. This fact sheet addresses only AFFF because it is the most widely used and 
available type of Class B foam.  

 
Figure 1. Types of Class B foams. 

Source: S. Thomas, Wood, PLC. Used with permission. PFAS-1, Figure 3-2. 

  

ITRC has developed a series of fact sheets 
that summarizes recent science and emerging 
technologies regarding PFAS. The information 
in this and other PFAS fact sheets is more fully 
described in the ITRC PFAS Technical and 
Regulatory Guidance Document (Guidance 
Document) (https://pfas-1.itrcweb.org/). 

This fact sheet outlines methods to properly 
identify, handle, store, capture, collect, 
manage, and dispose of AFFF to limit potential 
environmental impacts, and includes:  

• Definition of AFFF 
• Best Management Practices for AFFF use 
• Regulations Affecting Sale and Use 
• Foam Research and Development 
 

https://pfas-1.itrcweb.org/
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AFFF is considered a fluorinated foam and when mixed with water, the resulting solution achieves the interfacial 
tension characteristics needed to produce an aqueous film that spreads across the surface of a hydrocarbon fuel 
(petroleum greases, tars, oils, and gasoline; and solvents and alcohols) to extinguish the fire and to form a vapor 
barrier between the fuel and atmospheric oxygen to prevent re-ignition. This film formation is the defining feature of 
AFFF.  

AFFF has been used at chemical plants, flammable liquid storage and processing facilities, merchant operations (oil 
tankers, offshore platforms), municipal services (fire departments, firefighting training centers), oil refineries, terminals, 
and bulk fuel storage farms, aviation operations (aircraft rescue and firefighting, hangars), in some industrial fire 
extinguishers, and military facilities.  

There are three types of AFFF. Each is presented in Figure 1: 

• legacy PFOS AFFF (manufactured in the US from the late1960s through 2002) 

• legacy fluorotelomer AFFF (contain some long-chain PFAS) (manufactured in the US from the 1970s until 2016) 

• modern fluorotelomer AFFF (short-chain PFAS became the predominant fluorochemicals used in manufacturing in 
response to USEPA 2010/2015 voluntary PFOA Stewardship Program) 

Most foam manufacturers now produce Class B F3s, and evaluation of the performance of these foams is an important 
consideration for future purchase decisions. As part of preplanning for replacement foams, it is important to ensure that 
the Class B F3 is not considered a regrettable substitution over AFFF and can achieve the required performance 
specifications for the target flammable liquid hazards (FFFC 2016). The 2022 National Defense Authorization Act 
(NDAA) requires a new Military Specification (Mil-Spec) for PFAS-free foams by January 2023. As of May 2022, F3s 
do not meet the performance requirements of the current Mil-Spec and are not used at federal- and FAA-regulated 
facilities (FAA 2021).  

The NDAA of fiscal year 2020 (signed into law Dec 20, 2019) requires the DOD to phase out its use of AFFF at all 
military installations by Oct. 1, 2024, with limited exceptions, and immediately stop military training exercises with 
AFFF. The secretary of the Navy must publish specifications for PFAS-free firefighting foam at all military installations 
and ensure that the foam is available for use by Oct. 1, 2023. The NDAA of fiscal year 2022 also addresses AFFF, 
specifically requiring new reviews and guidance to prevent and mitigate AFFF spills. In October 2021, the USEPA 
published the PFAS Strategic Roadmap: EPA’s Commitments to Action 2021–2024 (USEPA 2021 Ref#2223). The 
USEPA’s stated goals for addressing PFAS are focusing on research, restriction, and remediation. The strategic 
roadmap includes actions across the different divisions of USEPA. More information about USEPA’s actions in 2021 to 
address PFAS are available on their website (USEPA 2021 Ref#2223). 

3 Best Management Practices (BMPs) for Class B AFFF Use  
Firefighting foams are an important tool to protect human health and 
property from flammable liquid fire threats. Proper management and usage 
strategies combined with the ongoing refinement of environmental 
regulations will allow an informed selection of the viable options to 
sustainably use firefighting foams. BMPs should be established for the use 
of any firefighting foam to prevent possible releases to the environment that 
can lead to soil, groundwater, surface water, and potentially drinking water 
contamination. The discharge of firefighting foams to the environment is of 
concern because of the potential negative impact they can have on 
ecosystems and biota. AFFF, due to the presence of PFAS, poses a unique 
challenge to protecting the environment when it is released. Specifically, for 
AFFF, the amount of PFAS from foam that may enter groundwater depends 
on the type and amount of foam used, the degree of containment, when 
and where the foam was used, the type of soil and the depth to 
groundwater. AFFF is typically discharged on land but can run off into 
surface water or stormwater or infiltrate to groundwater. A conceptual site 
model (CSM) is presented in Figure 2.  

BMPs start with pre-planning and 
deciding which foam to keep in stock. 
The team should consider key factors 
such as these: 

• Whether F3 alternatives can meet 
site-specific performance 
requirements 

• Site-specific evaluation of likely 
fire hazards and potential risks for 
life, public safety, and property  

• Potential environmental, human 
health, and financial liabilities 
associated with AFFF releases 

• Site constraints, including existing 
equipment retrofit requirements to 
adapt to alternate foams 
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Figure 2. CSM for fire training areas.  

Source: Adapted from figure by L. Trozzolo, TRC. Used with permission. PFAS-1, Figure 2-19. 
BMPs should consider the entire life cycle for AFFF, Figure 3, including procurement and inventory, foam systems and 
operations, emergency firefighting operations, immediate investigative and clean-up actions, treatment and disposal 
and system replacement.  

The procurement and inventory of foam should be carefully considered. Foams should be selected that meet the 
performance specification requirements governing the use. Foams procured should be documented, labelled clearly 
and adequately contained. Foam use and disposal should be carefully tracked and recorded. 

When evaluating foam systems and operations, from fixed-system testing, mobile firefighting equipment testing and 
appropriate training exercises, engineering and administrative controls as well as personal protective equipment (PPE) 
should be carefully evaluated. During emergency firefighting operations 
following a release of firefighting foam, PPE should be used correctly, 
maintained, and decontaminated routinely. Immediate investigative and 
clean-up actions include initial mitigation efforts such as source control, 
containment tactics, and recovery tactics. 

The treatment and disposal of AFFF products and environmental media 
impacted with PFAS can be complex, time consuming, and costly. 
Practitioners should be aware of approved and available disposal options 
prior to the generation of PFAS-impacted waste or the start of an AFFF 
replacement project to avoid potentially lengthy waste storage 
timeframes. Currently, available disposal options for AFFF and PFAS-
impacted materials are limited and each option has its advantages and 
disadvantages. More information is in the Guidance Document, as well 
as in the PFAS Regulatory Programs Summary Table (see the External 
Data Tables on https://pfas-1.itrcweb.org). 

Firefighting foam replacement is complex and could require a complete 
system review and, potentially, redesign and modification of system 
components to meet the new objectives or material and performance 
requirements. Foam replacement should include an evaluation of 
specific hazards and application objectives, a review of applicable 
performance standards, an understanding of engineering requirements 
for foam product storage and application, and a check to ensure that the 
foam product is approved for use for the specific hazards being mitigated.  

  

Figure 3. Life cycle considerations for AFFF. 
Source: S. Thomas, Wood, PLC. Used with 

permission. PFAS-1, Figure 3-1. 

https://pfas-1.itrcweb.org/
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4 Regulations Affecting the Sale and Use of AFFF 
There are many State, Federal, and International regulations and guidance documents governing the procurement, 
use, and disposal of AFFF. Activities range from AFFF take-back programs and prohibition of manufacture, sale, use, 
and import of AFFF through to restrictions and requirements for disposal. More information is in the Guidance 
Document, as well as in the PFAS Regulatory Programs Summary Table (see the External Data Tables on https://pfas-
1.itrcweb.org).  

5 Foam Research and Development 
A substantial amount of research related to AFFF alternatives and replacement chemistries has recently been 
completed or is being considered at the time of publication. Several organizations globally have made investments in 
research and development around AFFF from the assessment of their use, environmental impacts, as well as 
socioeconomic impacts of transiton to and performance specifications of F3 alternatives. For more information related 
to this topic, please refer to the Guidance Document. 

6 References and Acronyms 
The references cited in this fact sheet and further references can be found at https://pfas-1.itrcweb.org/references/.  
Reference numbers are included in this fact sheet for non-unique citations in the Guidance Document reference list. 

The acronyms used in this fact sheet and in the Guidance Document can be found at https://pfas-
1.itrcweb.org/acronyms/. 
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Building a Circular Water Economy in the Great Lakes 
 
Conventional water and wastewater treatment flushes valuable resources down the 
drain and leaves harmful contaminants behind. At a time of growing water scarcity, 
Great Lakes ReNEW will transform waste into wealth for the Great Lakes Region. We 
will leverage our abundant share of global freshwater to drive innovation, safeguard our 
domestic water resources and supply chains, attract and retain water intensive 
industries, and position the U.S. as a global leader in economic growth and emerging 
industries. 
 
In January 2024, the National Science Foundation awarded up to $160 million over 10 
years to Current, a Chicago-based water innovation hub, to establish, develop, and 
grow the Great Lakes Water Innovation Engine: Great Lakes ReNEW. 
 
ReNEW’s goal is to accelerate the transition to a circular blue economy through: 
  

● Use-inspired R&D on selective separation and resource recovery of nickel, 
cobalt, lithium, nitrogen and phosphorus, and elimination of PFAS and other 
contaminants from water and wastewater. 

● Translation of innovation to market, connecting the assets of leading regional 
water hubs and testbeds, launching and investing in dozens of watertech 
startups, and building a centralized testbed for their products.  

● Workforce development to train people for quality jobs and careers and support 
K-12 STEM education. 

 
ReNEW’s economic impact will create new industries and jobs in the Great Lakes 
region, positioning the region as a leader in water innovation and circular economy 
practices. ReNEW’s environmental impact will improve human and planetary health 
through the discovery, development, and deployment of new technologies and practices 
for circular water management. 
 
Highlights 

● Funding: Up to $160 million support from the National Science Foundation’s 
Regional Innovation Engines program, with additional public (state and local), 
private (corporate), and philanthropic investments. 

● Leadership: Led by Current’s CEO and Engine Principal Investigator Alaina 
Harkness; Co-PI is Dr. Junhong Chen of Argonne National Laboratory and the 
University of Chicago’s Pritzker School of Molecular Engineering. 

 



 
 

 
 

● Regional Scope: Core partners span six Great Lakes states—Illinois, Indiana, 
Michigan, Minnesota, Ohio, and Wisconsin. 

● Collaboration: 50+ partners including research institutions, industry leaders, 
investors, government entities, and nonprofits. 

 
Objectives 

● Economic Growth: Create new opportunities; support emerging industries like 
AI, quantum, semiconductor manufacturing, etc; strengthen supply chains; and 
spur job creation in the region. 

● Resource Recovery: Innovate to extract and reuse energy, nutrients, and 
materials vital to the clean energy transition (lithium, nickel, cobalt) while 
removing contaminants (PFAS) from wastewater. 

● Sustainability: Shift from linear to circular water use; tackle water scarcity and 
quality issues by removing harmful chemicals and contaminants; improve the 
energy efficiency of water treatment technologies. 

● Workforce Development: Create career pathways and training programs that 
strengthen the water workforce through industry, community, and educational 
partnerships. 

 
Building on Success 
Since 2016, Current has put water innovation front and center as an economic 
opportunity and solution to managing growing global water risk. Current has raised 
more than $58 million to support water innovation and economic development, launched 
11 technology pilots, supported more than 40 water tech startups, and educated more 
than 40,000 people through events and convenings.  
 
Join us in transforming waste into wealth and health and driving the future of 
water innovation in the Great Lakes region. For more information and to explore 
partnership opportunities, visit currentwater.org & greatlakesrenew.org   

 

http://www.currentwater.org
http://greatlakesrenew.org
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Google’s hyperscale data centers, which power 
services like Gmail and Google Drive, average 550,000 
gallons per day, while smaller centers use about 
18,000 gallons. In the U.S., where individuals use 132 
gallons daily, a large data center consumes as much 
water as 4,200 people, ranking data centers among the 
top 10 industrial water users.3

With over 3225 data centers in the U.S., about 
20% were drawing water from stressed western 
watersheds by late 2021, worsening regional 
shortages.4

Meanwhile, the Midwest is emerging as a hyperscale 
data center hub, driven by AI and cloud demand:

• Chicago, IL: Data centers are expected to grow 
from 66 to 122 by 2028, with capacity rising from 
997 MW to 1,839 MW. 5

• Columbus, OH: The number of data centers is set 
to more than double from 40 to 85 by 2028.6

Globally, AI’s annual water consumption is projected to 
reach 4.2 to 6.6 billion cubic meters by 2027—four to 
six times Denmark’s annual usage.7

WATER REUSE SOLUTIONS
FOR DATA CENTERS

WHAT ARE DATA CENTERS AND WHY ARE THEY BECOMING MORE PREVALENT?
Data centers are physical facilities that house computers, servers, and other equipment used to store, manage, 
and process vast amounts of data for websites, apps, cloud computing, digital services, and AI. Their prevalence is 
increasing with the rise of AI and other fast, interactive computing technologies, driving the need for ever-larger 
facilities to process data more effi  ciently. Speed, size, and demand are key factors in this expansion.

As of 2024, there are at least 8,726 data centers worldwide. In the U.S., 3,225 data centers are distributed across 
various cities, including 145 in Chicago, 68 in New York City, and 107 in Cleveland. Canada has 251 data centers, with 
Toronto leading at 84, followed by Montreal with 54 and Vancouver with 26.1

Data Center
Capacity or
Classifi cation

Annual Water 
Consumption

Perspective

1 MW 6.7 Million 
Gallons

Annual water 
consumption of 
225 Americans

Hyperscale 200 million 
gallons

Annual water 
consumtion of 
6700 
Americans

Most data centers rely on municipal drinking water, 
using the same high-quality supply as residents at 
the same cost, primarily to cool their computers, 
servers, equipment, and other systems. New facilities 
supporting AI can use millions of gallons daily—about 
the same as a small town.

There are two main cooling methods: air conditioning 
powered by electricity or water-based systems. 
Evaporative cooling, while energy-effi  cient, consumes 
large amounts of water, straining resources in water-
scarce areas. This makes balancing water conservation 
and energy effi  ciency diffi  cult. Even electricity-based 
cooling has a hidden water cost due to power 
generation.2 Ultimately, there’s no way around high 
water use in data center cooling.

Using renewable energy can reduce both carbon and 
water footprints, while recycled water or closed-loop 
systems help cut water intake, improving effi  ciency 
and cost-eff ectiveness.

WHY DO DATA CENTERS NEED WATER?

HOW MUCH WATER DO THEY NEED?Data Centers in the Midwest

Comparative Water Impact

Image Source: Data Center Map

Source: Accenture and dgtlinfra
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By adopting water recycling and advanced treatment 
systems, Great Lake states can promote economic 
growth while preserving precious freshwater. This new 
approach can position the region as the world’s Water 
Belt able to absorb new industry, agriculture, and 
population.

Water reuse systems are already in place across the 
U.S. and the world. States like California and Texas 
are integrating recycled water in their drinking water 
supplies, Arizona reuses water for manufacturing 
and energy production, and Virginia protects military 
assets by capturing and reusing stormwater. Drought 
and disaster have brought these states to swiftly 
implement water reuse.8 Bringing water recycling into 
use now can avert such outcomes in Great Lake states.

Great Lakes communities can produce a range of 
high quality water to accommodate diff erent uses. By 
collaborating on fi t-for-purpose systems, utilities and 
industries can together advance technology in the 
region. Greater water availability brings more revenue 
and secures the potential for future growth.

Data centers can optimize water use with smart 
systems, continuously recycling water or producing 
it for external use, avoiding strain on local sewer 
systems.

Water reuse options for data centers include:

• Closed-loop systems with onsite water recycling, 
including rainwater harvesting.

• Municipalities supplying data centers with recycled 
water.

• Using data center water discharge for agricultural 
or industrial purposes.

• Data center partnerships for watershed 
replenishment or aquifer recharge.

SUSTAINABLE SOLUTIONS

FRESHWATERLAB.ORG
SUSTAINABLE SOLUTIONS

WATER RECYCLING TEAM

The Water Recycling Team at the University of Illinois 
Chicago looks forward to working with Great Lakes 
communities on the design and implementation of 
water recycling systems.
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