

Grass Carp Update

Seth Herbst

Binational Great Lakes AIS Forum Ann Arbor, MI November 9, 2017

Lake Erie Fisheries Management

Inter jurisdictional issues are addressed through the Joint Strategic Plan for Great Lakes Fisheries

Lake Erie Committee

- Michigan
- Ontario
- Ohio
- Pennsylvania
- New York

Lake Erie Committee

2012 – Increased reports from Michigan and Ohio commercial fishermen

• Asian carp position statement

- Use science to inform decision making
- Identify advanced monitoring and controls options
- Mutual Aid Agreement for AIS

Lake Erie Committee - strategy

Reduce the unknowns with research projects

- Current abundance, spatial distributions, spawning locations, reproductive capacity (diploid vs. triploid), age and size composition, and management efficiency/cost
- Increased sampling efforts and continued monitoring
 - Work with commercial fishers
 - **Collaborating with regional partners**
 - Response planning, Implement Mutual Aid Agreement, Structured Decision Making Framework

Working with Commercial Fishers

Planned Management Actions

2014 Invasive Carp Response Exercise

- Michigan shoreline, "hot ponds" area
- 96 hrs of electrofishing
- 58 hrs of gill netting
- 2 capture

2017 Invasive Carp Response Exercise

- Sandusky River, Ohio
- 26 hrs of electrofishing
- 33 hrs of gill netting
- 8 captures

Ongoing Research and Monitoring

Reproductive Status and Natal Origin

Ploidy analysis and otolith microchemistry

Tributary Use and Large-Scale Movement

• Great Lakes acoustic telemetry array and realtime receivers

Timing and magnitude of spawning events

 Ichthyoplankton sampling in the Sandusky and Maumee River

Additional research and monitoring

Asian carp early detection and field monitoring program

Ecological Risk Assessment of Grass Carp for the Great Lakes Basin

Early detection and monitoring program

Ichthyoplankton and adult sampling in Sandusky and Maumee rivers and bays

Optimizing electrofishing settings for grass carp

Initiating a Structured Decision Making Exercise

Bring groups together to:

- Establish goals and objectives using the best available information
- Collaboratively carry out management actions

Cooperating Partners

Structured Decision Making

Incorporates available information and stakeholders values

Provides a formal structure for making decision in a transparent and collaborative process

PrOACT framework

- <u>**Pr</u>oblem definition**</u>
- <u>O</u>bjectives
- <u>A</u>lternatives
- <u>C</u>onsequences
- <u>T</u>radeoffs

SDM workshops

Michigan State University hosted three workshops

Participants from 13 entities

- December 2016 set foundation
- 2. June 2017 refine SDM components
- September 2017 consequences and tradeoffs

Model

Clarify the decision context

Develop a strategy for controlling Grass Carp in Lake Erie to socially and environmentally acceptable levels

Define objectives and measures

1. Fulfill public trust and responsibility

- Minimize risk of spread/abundance
- Minimize ecosystem engineering impacts

2. Minimize management associated costs

Minimize dollars spent

3. Minimize collateral damage

- Avoid economic stress to stakeholders
 - Recreational and commercial
- Avoid affects on native ecosystems
 - Migratory fishes, T & E species, and public sentiment

Management action alternatives

- Removal Direct capture, harvest incentives, or chemical controls
 - Increase total mortality
- **Barriers** Behavioral or physical
 - Reduce spawning effort and therefore recruitment
- Flow modifications Control structures or channel modifications
 - Reducing frequency of high flow events necessary for reproduction

Population model

- Three regions, two habitats, and four seasons
- Matrix population model
 - Project abundance at age
 - Used Lake Erie data and prior literature information
 - Incorporated uncertainty through binomial and Poisson distributions
- Evaluate spatially and temporally specific management actions

Population model

- Estimate region and season specific abundance
- Probabilistically evaluate management effect

Evaluate Management Scenarios

- 1. No management action
- 2. General removal action
 - Planned management actions and commercial removal across seasons and habitats

3. Concentrated removal action

- Planned management actions and commercial removal concentrated in seasons and areas with high catchability
- 4. Concentrated removal action + barrier
 - Addition of a seasonal behavioral barrier in the Sandusky River

Outcomes and Implementation

- Management action takeaways
 - Removal may be effective increased effort in strategic locations
 - Barriers may be effective costs and implementation must be evaluated

• Key uncertainties

- Demographic parameters survival and stock-recruitment
- Seasonal movements
- Catchability estimates across gear types, seasons, habitats
- Funding and effort

Setting a Removal Target

How many fish must be must be removed annually to stop population growth?

- Assume population size of 2,000
- Annual survival = 0.75
- Direct capture on age 3+ fish
 - 600 mm or greater
- Fishing mortality = 0.35
- 390 fish/year

Lake Erie Grass Carp density

Projected years

Collaborative Efforts Moving Forward

Dedicated effort to grass carp response

- Planned and rapid responses actions
- Partnership with commercial fishermen

Continue ongoing research and monitoring

 Ploidy analysis, otolith microchemistry, early life history sampling in tributaries, telemetry study, and gain life history information

Reconvene SDM working group in to 2018

- Update SDM components as new information is gathered
- Evaluate competing management action scenarios

Questions?

http://michigan.gov/invasivecarp