Sampling Design for Early Detection of Aquatic Invasive Plants in Coastal Waters of the Great Lakes

Andrew Tucker, Lindsay Chadderton, Gust Annis (TNC) Erick Elgin (MSU Extension), Joel Hoffman (USEPA)

- Phase 1 - "Aquatic plant survey methods development and site assessment," GLRI F16AS00090 USFWS
- Phase 2 - "Invasive Aquatic Plant Surveillance in New York Great Lakes Ports" GLRI F20AP00244 USFWS
- Project goals:
- Develop an aquatic plant surveillance strategy capable of effectively sampling high risk sites
- Apply and refine the surveillance protocol at priority sites

Research Article

Towards a framework for invasive aquatic plant survey design in Great Lakes coastal areas

Andrew J. Tucker**, Gust Annis? Erick Elgin³, W. Lindsay Chadderton' and Joel Hoffman ${ }^{4}$ The Nature Conservancy. 721 Flamner Hall, Univerity of Notre Dame, IN 46556 . USA
Michigan State University Extension, 160 Agiculuture Hall, East Lansing. M1 48884, USA
MMchigan State Universty Extension, 160Agnicultre Hall, Last Lansing,
'USEPA Great Lakes Toxicology and Ecology, Division, Duluth, MN, USA
${ }^{*}$ C-Crreesponding author

Citation: Tucker AJ. Ammis G.EIzin E, Manderon w. Hiffums (co22) Tound ney desigi if Grear Liake cosital reas

ceived: 10 ctober 20 .
Accepted 4 Peember 2021
Handing editor: Martias Johansson Copyright: O Tucker et al.
 OPEN ACCESS

Abstract

Af least 65 aquatic plant species have been identified as part of a surveillance list of non-ative species that pose a threat to biodiversity and ecosystem services in the Laurentan Great Lakes. Early detection of these potentially invasive aquatic plants
(IAP) could minimize impacts of novel incursions and facilitate sucessfil eradiction We developed, implemented, and then adaptively refined a p robbabilistic boat-based Te davpling design that aimed to maximize the likelihood of detecting novel IAP
incurions in large (400+ hectres) Great L Iake cootal raeas Surevs were incursions in large (400+ hectares) Great Lakes coastal areass Surveys were conducted
from 2017 to 2019 at five Great Lakes locations - St Joseph River (MI), Saginaw from 2017 to 2019 at five Great Lakes locations - St Joseph River (MI), Saginaw
River (MI), Milwaukee (W), Cleveland (OH), and the Detoit River (MI) Aquatic plant communities were characterized across the five sites, with a total of 61 plant species detected One-fift of the species detected in our surveys were ron-2ative
to the Great L Lakes basin. Sample-based species rarefaction curves constricted from detection data from all surveys combined at each location, show that the estimated sample effort required for high confidence ($(95 \%$) detection of all aquatic plant at a a site, including potentially invaive species, vaines (<100 sample unity
for Detoit River, >300 sample uits for Milwauke, , roughly equivalent to 6 to 18 day sampling effort, reppecively). At least 70% of the estimated species pool was detected at each site during initial 3 -day surveys. Leveraging information on detection survey efficiency and completeness at some sites, with detection of at least 80% of the estimated species pool duving subsequent surveys. Based on a forest-based 70% or more of the variation in observed nichness at all sites (depth, fetch, percent littoral, distance to boat ramps and distance to marinas). We discoss how the modee outcomes can be used to inform survey design for other Great Lakes coastal areas.
The survey design we describe provides a useful template that could be adaptively improved for early detection of IAP in the Great Lakes.

Design principles and scope

- Survey design
- Quantitative and probabilistic (to evaluate sampling efficiency \& completeness)
- Stratified (to inform adaptive sampling)

Constraints/Scope

- Open water habitat for detection of submerged, emergent, and floating species
- Up to 3 days per site (500-2500 acres)
Detection of Aquatic Invasive

Research aricicle
Exploiting habitat and gear patterns for efficient detection of rare and non-native benthos and fish in Great Lakes coastal ecosystems

Anetr S. Treetrat, Johm R. Kelly, Joel C. Hoffman, Gregory S. Peterson and Coris W. West

Abstract

Species in Great Lakes Ports

Survey design overview

Methods

- FIELD
- boat based
- rake tosses and visual meander

- ANALYTICAL

- Sample-based rarefaction (to estimate species richness and survey completeness)

Results

- Targeting shallow or spp rich sites increases survey efficiency
- 75-95\% of the estimated spp pool detected with single survey
- Detecting entire spp pool requires substantial effort

Strengths

- Targets a range of "hotspots"; Richness is often (but not always) highest at points of entry

Strengths

- Targets a range of "hotspots" Richness is often (but not always) highest at points of entry
- Efficient detection compared to more systematic sampling

Strengths

- Targets a range of "hotspots"; Richness is often (but not always) highest at points of entry
- Efficient detection compared to nnore systematic sampling
Covers ground

Strengths

- Targets a range of "hotspots"; Richness is often (but not always) highest at points of entry
- Efficient detection compared to nore systematic sampling
- Covers ground
- Facilitates adaptive optimization

Limitations/Uncertainties

- Implementation requires taxonomic expertise
- Survey design requires some GIS proficiency; less so with the depth-based design; as yet unclear if richness-based design is worth the additional modeling effort
- How much is enough (from AIS detection perspective)? Detection of the rarest spp likely requires repeated visits/additional effort, although...
- The model assumes "rare" species are a good proxy for IAP...is that a good assumption? If not, then rarefaction may be underestimating detection sensitivity.
- Protocol could be adapted to incorporate abundance measures but random design wouldn't necessarily facilitate "status \& trends" measures
- Capable of detecting all growth forms, but...

	Count	Proportion
Total spp	40	1.00
Submerged	25	0.63
Free floating	7	0.18
Emergent	6	0.15
Rooted floating	2	0.05
Native	30	0.75
Non-native	10	0.25

Project objectives

> Test \& refine aquatic invasive plant surveillance methods
> Complete Hydrilla delimitation surveys to compliment Indiana response efforts
> Inventory other aquatic invasive plants
> Record presence of dresssenid mussels and mystery snails.

Lake Manitou

Delimitation undertaken out to 30 miles radius But source, pathway, and spread uncertain?

Hydrilla detected

Surveillance \& delimitation survey needs

Surveillance
> ideally need to detect new invasions in early phases of establishment (when most vulnerable) - requires a high detection probability

Delimitation survey - if new invasion detected:
> full management response can only be determined once full extent of range is established - requires a high detection probability

In selecting a survey method
> Trade off between covering ground \& a complete species census

- Wanted to maximize number of lakes surveyed \& minimize detection error
> Cost effective (needed to be affordable, limited budgets, no boats)

Aquatic plant surveillance methods

Illinois 2007 protocol

- Six rake tosses per site from boat landings

Indiana Hydrilla delimitation protocol

- 25 rake tosses from boat around boat landing Indiana Tier II whole lake surveys
- Grid up lake \& sample each intersect point with a single rake toss (Indiana $=50$ tosses)

NFWF Shore-based rake survey

- Repeated rake tosses at up to $6 \times 5 \mathrm{~m}$ intervals from landing - toss rake at each point until no new species detected.

Snorkel survey

- 30 minute snorkel survey

Developing snorkel method (species accumulation curves)

> collect all species observed
> examine discovery rates to select optimal sampling time

Concluded 30 minutes snorkel time was optimal

NFWF survey protocol

- Snorkeler - 30 minutes searching area around the boat landing - collecting all plant species observed as well as introduced mollusks (Dreissenids and Mystery Snails)
- Kayaker role - safety, collects emergent plants, directs diver to potentially different plant communities, collect physico-chemical data.
- 4×2 person teams, each 2 person team self contained.
(kayak and all gear fit inside Van)
- Plant collections kept cool, returned to lab and identified by expert

Testing snorkeling efficacy vs Illinois rake toss

Questions:
> Can snorkeling be used as a rapid survey method
>Are detection rates comparable to rake methods

- Illinois: 6 rake tosses around boat landing
- 30 minute snorkel around boat landing (1 diver)

Comparison of snorkel counts versus Illinois rake

 survey protocol ($\mathrm{n}=6$)> surveyed six lakes in September 2008

Comparison with 6 rake tosses at landings

Snorkel survey vs Indiana 25 rake toss
Rake survey $=12 \mathrm{sp}$
Snorkel average $=19 \mathrm{sp}$
Total species (all methods) $=28$

Comparison across all methods

Lake	Total sp. discovered	No. Sp. by all Snorkelers	No. Sp. by IN Rake Toss (N=25 toss)	No. Sp. Shore based rake toss	No. Sp. by all Rake Toss	
Webster	25	$22(88.0 \%)$	$6(24.0 \%)$	$10(40 \%)$ 11 toss	$17(68.0 \%)$	
Clear	21	$20(95.2 \%)$	$13(61.9 \%)$	$15(71 \%)$ 25 toss	$18(85.7 \%)$	
Simonton	28	$26(92.9 \%)$	$12(42.9 \%)$	$10(31 \%)$ 13 toss	$14(50.0 \%)$	
Syracuse	32	$27(84.4 \%)$	$18(56.3 \%)$	$13(41 \%)$ 14 Toss	$25(78.1 \%)$	
Wawasee	31	$28(90.3 \%)$	$17(54.8 \%)$	$16(52 \%)$ 19 toss	$24(77.4 \%)$	
Average (SE)	$25.4(1.7)$	$24.1(1.5)$	$11.3(1.5)$	11.2 (across 9 lakes)		

Diver experience matters

$>$ Lakes listed in order sampled by NFWF crews
$>$ NFWF = average of 8 divers
Difference tended to be rare native species and rarely AIS
$>$ Training and QA important

Divers vs Tier II vs total recorded species (all methods).

> Max species = all species encountered by all divers

- Even experienced diver only observed between $55 \%-87 \%$ of max species pool
> Most instances performed as well as IN Tier II survey (50 rake tosses across a whole lake)

Strengths

Pro:

- 30 minute snorkel time appears sufficient to collect most common species
- 30 minute snorkel method more effective than standard POE rake toss methods, both in terms of species richness and collection of rare species especially if using experience divers
- Significant inter diver variability - difference usually due to rare species (and not AIS)
- Possible to cover multiple sites in a day
- Snorkeling boat ramps appears to provide a cost effective rapid survey methods that is suitable for surveillance \& AIS delimitation surveys (>800 sites, and over 500 lakes surveyed across 3 states in 2 years)

Weaknesses

- Cons:
- spatially coverage limited (> than ramp rake tosses - less than boat rake toss)
- Assumes boat ramps area of greatest risk (i.e. trailered boats most important pathway of invasion)
- Assumes rare natives are good surrogate for AIS - result possibly overestimate detection sensitivity

- Inter diver detection variability - experience matters
- Requires clean, clear water, and safe conditions Diver 1: 21 sp

Acknowledgements

- Funding for work from National Fish and Wildlife Foundation, USFS \& Oberweiller Foundation
- Sagar Mysorekar (GIS)
- Collaborators/partners in IDNR, MDEQ, MDNR, ODNR
- The summer field crews

Questions

Inter-diver variability (\% species detected)

		Diver									
(łołal number of unique species by all divers)	$\begin{aligned} & \text { - } \\ & 0 \\ & 0 \\ & 3 \end{aligned}$	1*	2	3	4	5	6	7	8\#	9	10
Loon (23)	1	$\begin{gathered} 20 \\ (87 \%) \end{gathered}$	$\begin{gathered} 14 \\ (61 \%) \end{gathered}$	$\begin{gathered} 12 \\ (52 \%) \end{gathered}$	$\begin{gathered} 16 \\ (70 \%) \end{gathered}$	$\begin{gathered} 10 \\ (43 \%) \end{gathered}$	$\begin{gathered} 10 \\ (43 \%) \end{gathered}$	$\begin{gathered} 14 \\ (61 \%) \end{gathered}$	$\begin{gathered} 15 \\ (65 \%) \end{gathered}$	$\begin{gathered} 11 \\ (48 \%) \end{gathered}$	$\begin{gathered} 10 \\ (43 \%) \end{gathered}$
Ceder (20)	1	$\begin{gathered} 11 \\ (55 \%) \end{gathered}$	$\begin{gathered} 9 \\ (45 \%) \end{gathered}$	$\begin{gathered} 10 \\ (50 \%) \end{gathered}$	$\begin{gathered} 11 \\ (55 \%) \end{gathered}$	$\begin{gathered} 10 \\ (50 \%) \end{gathered}$	$\begin{gathered} 9 \\ (45 \%) \end{gathered}$	$\begin{gathered} 10 \\ (50 \%) \end{gathered}$	$\begin{gathered} 13 \\ (65 \%) \end{gathered}$	$\begin{gathered} 9 \\ (45 \%) \end{gathered}$	$\begin{gathered} 7 \\ (35 \%) \end{gathered}$
Loon II (21)	3	$\begin{gathered} 12 \\ (57 \%) \end{gathered}$	$\begin{gathered} 9 \\ (43 \%) \end{gathered}$	$\begin{gathered} 9 \\ (43 \%) \end{gathered}$	$\begin{gathered} 6 \\ (29 \%) \end{gathered}$	$\begin{gathered} 9 \\ (43 \%) \end{gathered}$	$\begin{gathered} 12 \\ (57 \%) \end{gathered}$	$\begin{gathered} 6 \\ (29 \%) \end{gathered}$	$\begin{gathered} 12 \\ (57 \%) \end{gathered}$	$\begin{gathered} 6 \\ (29 \%) \end{gathered}$	$\begin{gathered} 6 \\ (29 \%) \end{gathered}$
Big (19)	3	$\begin{gathered} 15 \\ (79 \%) \end{gathered}$	$\begin{gathered} 10 \\ (53 \%) \end{gathered}$	$\begin{gathered} 12 \\ (63 \%) \end{gathered}$	$\begin{gathered} 11 \\ (58 \%) \end{gathered}$	$\begin{gathered} 14 \\ (74 \%) \end{gathered}$	$\begin{gathered} 8 \\ (42 \%) \end{gathered}$	$\begin{gathered} 9 \\ (47 \%) \end{gathered}$	$\begin{gathered} 12 \\ (63 \%) \end{gathered}$	$\begin{gathered} 10 \\ (53 \%) \end{gathered}$	$\begin{gathered} 11 \\ (58 \%) \end{gathered}$
Crooked (31)	3	$\begin{gathered} 25 \\ (81 \%) \end{gathered}$	$\begin{gathered} 20 \\ (65 \%) \end{gathered}$	$\begin{gathered} 21 \\ (68 \%) \end{gathered}$	$\begin{gathered} 22 \\ (71 \%) \end{gathered}$	$\begin{gathered} 20 \\ (65 \%) \end{gathered}$	$\begin{gathered} 14 \\ (45 \%) \end{gathered}$	$\begin{gathered} 18 \\ (58 \%) \end{gathered}$	$\begin{gathered} 24 \\ (77 \%) \end{gathered}$	$\begin{gathered} 16 \\ (52 \%) \end{gathered}$	$\begin{gathered} 19 \\ (61 \%) \end{gathered}$
Wawasee (30)	8	$\begin{gathered} 24 \\ (80 \%) \end{gathered}$	$\begin{gathered} 19 \\ (63 \%) \end{gathered}$	$\begin{gathered} 23 \\ (77 \%) \end{gathered}$	$\begin{gathered} 21 \\ (70 \%) \end{gathered}$	$\begin{gathered} 22 \\ (73 \%) \end{gathered}$	$\begin{gathered} 22 \\ (73 \%) \end{gathered}$	$\begin{gathered} 22 \\ (73 \%) \end{gathered}$	$\begin{gathered} 25 \\ (83 \%) \end{gathered}$	$\begin{gathered} 21 \\ (70 \%) \end{gathered}$	$\begin{gathered} 23 \\ (77 \%) \end{gathered}$

NFWF survey costs

> Yr 1 Hired 9 summer students for 8 weeks
> 4×2 person teams

- All plants collected were bagged \& labeled - identified back in lab. (for Mi \& IN).
> Same experienced person ID all plants
> Weekly running cost ~ \$1200-\$1600 / crew
> Wages (\$800)
> Van hire (\$200)
> Fuel (\$200)
> Accommodation
> Consumables
(based in SBN)

