

pefy convention.

Development of Passive Air Samplers (PAS) for Persistent Bioaccumulative and Toxic (PBTs) Chemicals

Thomas M Holsen Clarkson University

Clarkson UNIVERSITY defy convention

Acknowledgements

- Tom Harner Environment Canada
- Co-PI Suresh Dhaniyala
- Students Justin Thomas, Paul Ashman, Jiaoyan Huang
- Great Lakes Commission GLAD (Jon Dettling Project Officer).

Outline

- Advantages and disadvantages of passive samplers
- Types of passive samplers
- Computable fluid dynamic model: FLUENT
- Wind tunnel and field experiments
- Conclusions
- Future work

Introduction

- Passive air sampler a sampler that can be used to "measure" air concentrations without power
- Advantages simple, generally cheap, do not require specialized sampling platforms, can have long exposure times, measure average concentrations.
- Disadvantages can require long exposure times, measure average concentrations (events can be missed), generate few data points, sampling volumes are unknown.

Passive samplers

Collection media

- Semipermeable membrane
- Polymer-coated glass
- XAD-2 resin
- Polyurethane foam disk (PUF)
- Housing
 - Flow-through samplers
 - Flying saucer samplers

Chemical Uptake by Media

Clarkson

defy convention

Shoeib, M., Harner, T. 2002. Environ. Sci. Technol. 36, 4142-4151.

Chemical Uptake by Media

Clarkson

UNIVERSITY

defy convention

Shoeib, M., Harner, T. 2002. Environ. Sci. Technol. 36, 4142-4151.

Chemical Uptake by Media

Clarkson

defy convention

Shoeib, M., Harner, T. 2002. Environ. Sci. Technol. 36, 4142-4151.

Equilibrium Sampler

To determine air concentration the media-air partition coefficient (K_{am}) is needed

$$C_A = \frac{c_m}{K_{am}}$$

- C_a air concentration
- C_m mass on the media

POG

- POlymer-coated Glass (POG) samplers
- Coating of ethylene vinyl acetate (EVA) less than 1 μ m thick coated on to glass.
- Time to equilibrium varies between a few hours to approx. 20 d for PCB-18 and PCB-138, respectively.

• Farrar et al Environ. Sci. Technol. 2005, 39, 261-267

Dynamic Sampler

 To determine air concentration a sampling rate (SR) is needed (m³/day)

$$C_A = \frac{c_m}{SR * time}$$

C_a – air concentration
C_m – mass on the media

Semipermeable Membrane Device (SPMD)

Clarkson UNIVERSITY defy convention

Tubing: lay flat low density polyethylene **Triolein:** 99% purity

Sampling rates range between 0.6 and 6.1 m³ d⁻¹ for PAHs – sampling time was 32 days (Bartkow et al. Atmos Env 38 (2004) 5983-5990).

http://www.est-lab.com/spmd.php

Flow-through sampler

Sampling rate 15 up to 100 m³/d – seasonal or monthly samples Wania et al., 2007

Single bowl sampler

Sampling rate 8 – 15m³/d; Thomas et al., 2006

XAD-samplers

Clarkson

onvention

PUF-Disk sampler

Harner et al., 2006; Thomas et al., 2006

Clarkson

UNIVERSITY

FIGURE 3. Concentrations in air ($pg \cdot m^{-3}$) for endosulfans (sum of isomers: endosulfan 1 + endosulfan 2 + endosulfan sulfate) over four sampling periods during December 2004 to December 2005. Endosulfan, a currently used pesticide shows strong variability spatially and among seasons at sites impacted by its use. See Table S1 for sampling dates.

Seasonally Resolved Concentrations of Persistent Organic Pollutants in the Global Atmosphere from the First Year of the GAPS Study Karla Pozo, Tom Harner, Sum Chi Lee, Frank Wania, Derek C. G. Muir and Kevin C. Jones Environ. Sci. Technol., 2009, 43 (3), pp 796– 803 Copyright © 2008 American Chemical Society

Fig. 3. Estimated monthly air concentration for α -HCH and γ -HCH during the growing season of 2003 at each of the passive air sampling sites in Ontario, based on an air sampling rate of 3.5 m³ d⁻¹.

Clarkson UNIVERSITY defy convention

- Atmospheric concentrations of current-use pesticides across southcentral Ontario using monthlyresolved passive air samplers
- T. Gouin, M. Shoeib, T. Harner
- Atmospheric Environment 42 (2008) 8096–8104

Dynamic Sampler Theory

Clarkson

defy convention

 $V_{PSM} (dC_{PSM}/dt) = k_A A_{PSM} (C_A - C_{PSM}/K_{PSM-A})$

Linear region governed by \mathbf{k}_{A} , air-side mass transfer coefficient (MTC)

Equilibrium determined by \mathbf{K}_{PSM-A} , the passive sampling medium-air partition coefficient

Ideally k_A is independent of sampling conditions Is a function of chemical properties (D_A)

 Uptake Parameters:
K_{PSM-A}, passive sampling medium-air partition coefficient (K_{PSM-A} is similar to K_{OA}, the octanol-air coefficient)

• k_A , air-side MTC (approx. D_A /boundary layer thickness

Determining sampling rates (SR)

- Compare active and passive samplers side-by-side
- Add depuration compounds (dc) to media before sampling (loss of dc is a measure of uptake rate)
- Perform controlled experiments

SR variability

SRs are a function of: k_A (MTC)

- Sampler design
- Wind speed
- Temperature
- External flow fields
- Sampler orientation

K_{psm-A}(partition coefficient)

Wind tunnel experiments

Clarkson UNIVERSITY *defy* convention

Wind tunnel experiments

Clarkson

UNIVERSITY

SRs calculated from wind tunnel measurements

 $\alpha = 0.5 \text{ or } 0.67$

SRs calculated from computational fluid dynamic modeling

Clarkson

UNIVERSITY

defy convention

D: diffusivity

dC/dL: concentration gradient (C_0 was assumed to be 0)

A: surface area of PUF

C_{freestream}: concentrations in free stream

Numerical values are collected using "rakes". These rakes consist of a specific number of points oriented in a line perpendicular to the surface of the sampling medium (PUF).

The first point above PUF on mesh line was used to calculated dC/dL.

Velocity contour results from 3D CFD

Clarkson

UNIVERSITY

Wind Tunnel Measurements

Clarkson UNIVERSITY defy convention

Internal wind speed distribution Clarkson UNIVERSITY at 3 m s⁻¹ external wind speed

PCBs SR converted from water evaporation and CFD simulations

Clarkson

Sampling Rates (SR) for PCBs

PUF disk sampler

Source	Sampling rate:	Sampling rate:	Sampling rate:
	$U_{o} = 1 \text{ m s}^{-1}$	$U_{o} = 3 \text{ m s}^{-1}$	$U_{o} = 5 \text{ m s}^{-1}$
Thomas et al. (2006)	3.3	6.2	8.7
Ashman et al (2007)	3.8	6.8	10.3
	Mean (m ³ day ⁻¹)	$Minimum (m^3 day^{-1})$	Maximum (m ³ day ⁻¹)
Gouin et al. (2005)	3.1	1.5	5.7
Mari et al. (2008)	3.8	1.6	4.9
Chaemfa et al. (2008)	4.9	2.9	7.3
Thomas et al., 2006 – 2-D CFD modeling			
Ashman et al., (2010) – 3-D CFD modeling			
Mari et al., 2008; Chaemfa et al., 2008 – uptake experiments			
Gouin et al 2005 – depuration			

Clarkson

UNIVERSITY

Variation of water evaporation with different orientations at 3 m s⁻¹

Mercury Passive Sampler

PUF disk and holder replaced with filter holder Four upward facing and four downward facing filters

Gold-coated filter for Hg° Ion-exchange membrane for GOM (RGM)

Gold-coated QFF analytical method – thermal desorption

Hg° sampling rates

at 3 m/s

- Wind tunnel measured Hg $^{\circ}$ SR : 10.2 ± 0.2 m 3 day $^{-1}$
- CFD Simulated Hg° SR: 9.9 m³ day⁻¹

Field $- 6.6 \text{ m}^3/\text{d}$

Tekran Automated Hg Speciation System

Hg° measured every 5 minutes RGM and HgP every 2 hours

Choi et al., 2009 Tekran, Toronto, CA

GOM mass collection rate

 Ion-exchange membrane was used to measure captured RGM

Clarkson

INIVERSITY

defy convention

• Analytical method: EPA 1631 E

Gaseous oxidized Hg (GOM or RGM)

Clarkson

UNIVERSITY

Gaseous oxidized Hg (GOM or RGM)

Clarkson

Multiple Screen PAS

Conclusions

- Passive air samplers (PAS) are an effective way to measure average concentrations
- Wind tunnel measurements and CFD simulations improve our understanding of PAS
- Modifying existing samplers may improve their performance

Future work

- To improve our understanding of factors influencing sampling rates of Hg in the field, such as O₃ concentrations and RH.
- To improve our understanding of particle capture.
- Improve on existing PAS designs

Acknowledgements

Great Lakes Commission (Jon Dettling Project Officer).

Thanks for your attention! Questions?