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A) GLAD Multimedia Hg Study (Evers, Wiener)

- Co-leader, “Wildlife” group (w/Mike Meyer)

- Temporal and spatial gradients of mercury

- Biological effects in wildlife

Talk Overview – 2 Parts

- Participants noted at end

B) GLAD Neurochemical Biomarkers

- Hg exposure/effect in eagles, otters, mink,etc

- Jen Rutkiewicz*, Peter Dornbos*, Sean Strom, 
Tom Cooley, + many more (*=students)
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Goal: Top predator fish will be safe for consumption by all 
wildlife.
Status: Goal is not met in any Great Lake.
http://www.epa.gov/glnpo/glindicators/fishtoxics/topfisha.html [accessed Oct 1, 2009]
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Number of Lake Acres Under Advisory for Various Pollutants in 2004
2004 National Listing of Fish Advisories (www.epa.gov/waterscience/fish)
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A Simplified Mercury Cycle

Hg0
Hg2+

*** all steps are extremely complex!!!

Hg-S

MeHg
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U.S. EPA 1999 National Emissions Inventory and 1995-1999 Environment Canada database
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National Atmospheric Deposition of Hg
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Herring Gulls as sentinels

Rutkiewicz et al. 2010. Environ Poll 158: 2733-2737
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Lake Superior
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Hg Temporal Trends 
(CWS, 1974-2009)

Significant decline
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SLIDE COURTESY: CHIP WESELOH, CWS

9



Collection Year

1890 1920 1950 1980 2010

F
e
a
th

e
r 

H
g
 C

o
n
c
e
n
tr

a
ti
o
n
 (

µ
g
/g

)

0

10

20

30

40

B. Great Blue Heron

flank feather
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A. Common Tern

flank feather
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C. Herring Gull

flank feather

•Museum specimens to analyze 
feather Hg 1895 -2007 from 
three Michigan birds

•0.09 – 0.16 ppm decrease/year

•Corroborate sediment data

Head et al., under review. Ecotoxicology
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Bald Eagles as sentinels

Map of states, birds received

Michigan (40)

Wisconsin (12)

Minnesota (61)

Iowa (10)

Overall mean THg:
2.80 ppm

Overall range THg:
0.20-34.01 ppm

4.60 ppm
(0.29-34.01)

2.10 ppm
(0.20-12.71])

1.47 ppm
(0.81-2.23)

a

ab

b

ab
Iowa (10)

0.20-34.01 ppm

www.eduplace.com

3.02 ppm
(0.61-7.61)

(0.29-34.01)

Ohio (12)
1.30 ppm
(0.27-2.86)

b

ab
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Mink as sentinels

Mercury levels in mink liver from the 
lower Great Lakes Basin

1999-2006, mostly AOCs, n=6-18/site

Eastern Lake 
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Western Lake Erie
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Credit: Pam Martin, Environment Canada
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- Hg levels in wildlife have decreased over time 
in many regions

… but levels in some species > criteria values

… and hotspots still exist across Great Lakes

- data integration via GLAD Multimedia Group 

Mid-Talk Summary

- data integration via GLAD Multimedia Group 
outputs, Ecotoxicology publications, and 
ICMGP meeting should increase 
understanding

- good at judging “exposures”; poor at assessing 
“harm” � Pt 2 of talk
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>1ppm Hg
high levels

< 1ppm Hg
relevant levels

???

What we do not know
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NEUROTOXIC

MERCURY

BRAIN
CHEMISTRY

SILENT
DAMAGECHEMISTRYDAMAGE
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“persistent morphological and/or biochemical 
injury which remains clinically unapparent unless 
unmasked by experimental or natural 
processes… 

Silent Damage

… the concept is so attractive and intuitive that 
one often forgets how little hard experimental 
data exist to directly support it.”

- Kenneth R. Reuhl (1991) “Delayed expression of neurotoxicity: the 
problem of silent damage” Neurotoxicology 12: 341-346.
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“neurodevelopmental disorders caused by 
industrial chemicals has created a silent 
pandemic in our modern society… 

…1 out of 6 children has neurodevelopmental 

… or a “Silent Pandemic”?

…1 out of 6 children has neurodevelopmental 
disability… costs are estimated to have ranged 
from US$110 billion to $319 billion each year”

-Grandjean and Landrigan. 2006. “Developmental neurotoxicity of 
industrial chemicals” The Lancet 368:2167-78.
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Research Hypothesis

Neurochemical research can further our 
knowledge of the mechanisms and impacts 
of aquatic pollutants towards the health of 
humans, wildlife, and ecosystems. 

���� BRAIN CHEMISTRY ����

humans, wildlife, and ecosystems. 

objective/quantitative method to 
assess early/subtle effects

Mercury                                             Neurotoxic
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Environ Toxicol Chem 24: 1444-1450

r = 0.546, p < 0.001 LOAEL1,2

1 Wren et al. 1987 
2 Wobesor et al. 1976
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Lab study – corroboration?
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0 0.50.1 1 2

Uptake        ??????   Lesions1,2 Behaviour1,2

[Dietary] ppm

Historic and 
High Exposure 

Levels

Ecologically Relevant 
Levels of Hg, especially 

in the Great Lakes region

Neurochemical
Effects

1 Wren et al. 1987
2 Wobesor et al. 1976

Toxicol Sci 91: 202-209

Environ Toxicol Chem 24: 1444-1450

Environ Sci Technol 39: 3585-3591
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1956:
first case of human Minamata disease (mercury poisoning) 
reported in Japan

1951:
“citizens noticed that many of the town’s cats, rats, crows, and 

fish behaved strangely. For no apparent reason they exhibited 

frenzied behavior, throwing themselves against stone walls, frenzied behavior, throwing themselves against stone walls, 

staggering as though intoxicated, and frequently hurling 

themselves into Minamata Bay, where many drowned.”

Harada, 1995. Crit Rev Toxicol 25:1

Eto, 1997. Toxicol Pathol 25:614

Aronson, 2005. Med Health RI 88:209

28



“In ecoepidemiology, the occurrence of an 
association in more than one species and species 
population is very strong evidence for causation.”

Glen Fox. 1991. J Toxicol Environ Health 33: 359-373 

“our fate is connected with the animals.”

Rachel Carson. 1962. Silent Spring
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- Pt 1. Piscivorous wildlife as sentinels of 
mercury exposure (spatial, temporal)

- Pt 2. Neurochemical biomarkers provide 
mechanistic link between exposure & disease

- Continuum of effects established, with real-

Final Summary

- Continuum of effects established, with real-

world levels α neurochemical change

- Multiple neurochemical pathways and brain 
regions tease apart toxicant-specific impacts 
and physiological/ecological relevance
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(SOAR), Mike Meyer (Wisc DNR), Irene Bueno (Raptor Center), Ling 
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NIL BASU, PhD

Questions?

NIL BASU, PhD

Assistant Professor
Department of Environmental Health Sciences
School of Public Health, University of Michigan
Ann Arbor, MI

niladri@umich.edu
sitemaker.umich.edu/ecotoxicology.lab
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