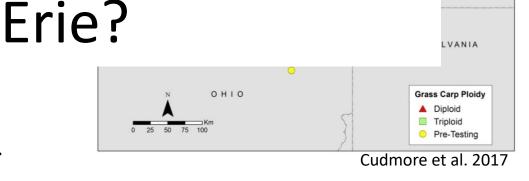


Using Adaptive Management to Combat Lake Erie Grass Carp

Mark DuFour, Kelly Robinson, Seth Herbst, Tammy Newcomb, Michael Jones

Michigan State University


KE ONTARIO

NEW YORK

BUFFALC

Grass Carp in Lake Erie

- Early: What's the best way to
 - 1985: control grass carp in Lake
- Increa
- Assumed to be triploid, but...
- Recent evidence of successful recruitment in Sandusky River (fertilized eggs)

What Makes Decision Making Difficult?

- Objectives are complex, contradictory, or disputed
 - Different perspectives, disagreement on values
- Don't know all the possible actions/alternatives
- System dynamics may be poorly known (uncertainty)
- Trade-offs are difficult to make

Structured Decision Making

- Values-based, transparent, objective way to make complex decisions
- PrOACT Framework

"A formal application of common sense for situations too complex for the informal use of common sense." - R. Keeney

JOHN :

HAMMOND

"The best book I know on how to make a decision." Roger Fisher, coauthor of the bestseller detting to Yes

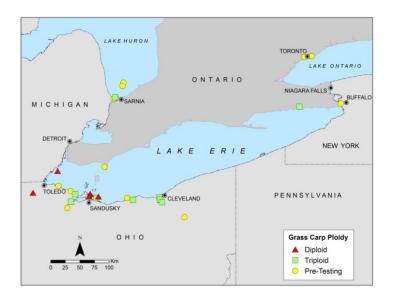
Smart Cheices

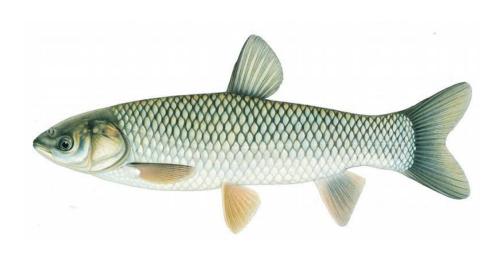
> A PRACTICAL GUIDE TO MAKING

> > RALPHI

KEENEY

LIFE DECISIONS


HOWARD


RAIFFA

Problem Statement

Develop a strategy for controlling grass carp in Lake Erie to **socially** and **environmentally acceptable** levels

Objectives

1. Fulfill public trust and responsibility

- Minimize abundance / risk of spread
- Minimize ecosystem engineering impacts

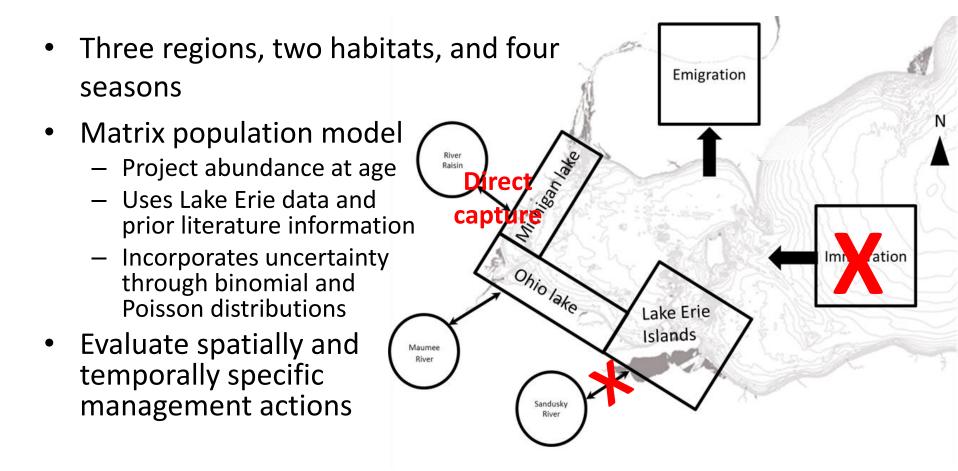
2. Minimize control costs

- Minimize dollars spent

3. Minimize collateral damage

- Avoid economic stress to stakeholders
 - Recreational and commercial
- Avoid effects on native ecosystems
 - Migratory fishes, T & E species, and public sentiment

Alternatives


Removal – Direct capture, harvest incentives, or chemical controls

Increase total mortality – add fishing mortality (F)

- **Barriers** Behavioral or physical
 - Reduce spawning effort and therefore recruitment
- Flow modifications Control structures or channel modifications
 - Reducing frequency of high flow events necessary for reproduction

Population model

Evaluate Control Scenarios

1.No action

2.General removal action

 Removal efforts across seasons and habitats based on current best information

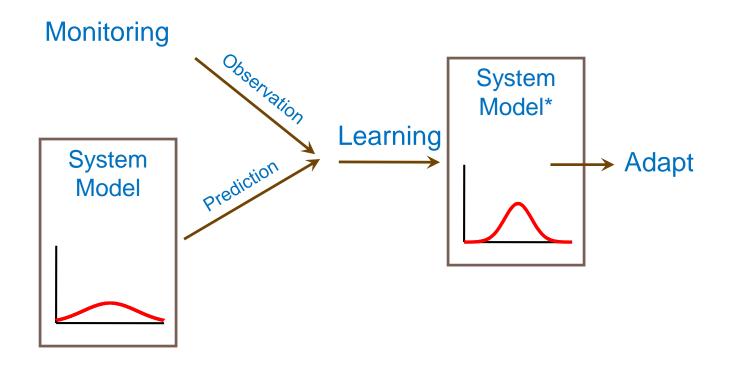
3.Concentrated removal action

 Removal efforts concentrated in seasons and areas with high catchability

4.Concentrated removal action + barrier

Addition of a seasonal behavioral barrier in the Sandusky River

Outputs and implementation


- Key uncertainties can affect decision
 - Demographic parameters survival and stock-recruitment
 - Seasonal movements
 - Funding and effort
 - Catchability estimates across gear types, seasons, habitats
 - Population size

Control scenario takeaways

- Removal may be effective increased effort in strategic locations
- Barriers may be effective costs and implementation must be evaluated
- Flow modification determine priority for continued evaluation

Adaptive Management

Michigan State University

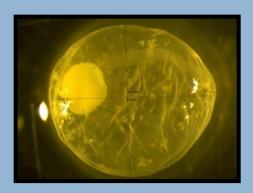
Addressing Key Uncertainties

- When and where to sample?
 - Ecology is not well known
 - Continue monitoring and research
- How to sample?
 - Challenging to capture when present
 - Avoid nets, resistant to electrofishing, and occupy inaccessible habitats
 - Optimal sampling gear not known

MICHIGAN STATE

Michigan State University

Michigan/Ohio Grass Carp Response



Grass Carp Focus Area

Addressing the Knowledge Gaps

- Ploidy analysis: fertile vs. sterile
- Commercial fishermen: removal
- Egg/Larvae sampling: early life history
- Telemetry: seasonal movements
- Modeling: spawning and hatching locations
- Vegetation mapping: food availability/impact

Grass Carp Detections in 2017

- 1. Identify tributary use
- 2. Aggregations
- 3. Inter-basin movements

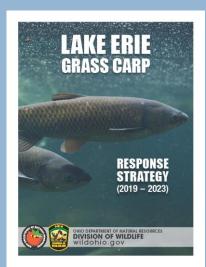
2018 Targeted Response

- Locations were informed by telemetry
- Timing overlapped with suitable spawning conditions
- Increased capacity through Mutual Aid Agreement for AIS Response

2018 Targeted Response

- High effort and participation
 - 63.7hrs TN; 70.5hrs EF
 - 71 people
- Tandem electrofishing most effective
- 30 Grass Carp captured
 - 27 Sandusky
 - 3 Maumee
- 75% of Grass Carp removed
- Moving towards targeted removal

5-Year Response Strategy


Prevent diploid Grass Carp from becoming further established in the Lake Erie basin and as the science develops, eradicate them from Lake Erie.

Outcome 1: Prevent Further Introduction / Expansion

- Objective 1.1 Secure Supply Chain
- Objective 1.2 Insure Secure Bait Trade
- Objective 1.3 Close Knowledge Gaps / Understand Life History

Outcome 2: Manage Grass Carp Populations

- Objective 2.1 Removal & Prevention
- Objective 2.2 Engage Commercial Netters
- Objective 2.3 Evaluate Use of Innovative Control Technologies

Moving Forward

- Grass Carp Assessment and Removal Program (GCARP)
- Ramp up real-time tracking
- University of Toledo Modeling
- Barrier Assessment

Input
$$\rightarrow$$
 BLACK BOX \rightarrow Output

