

Genetic Biocontrol Overview

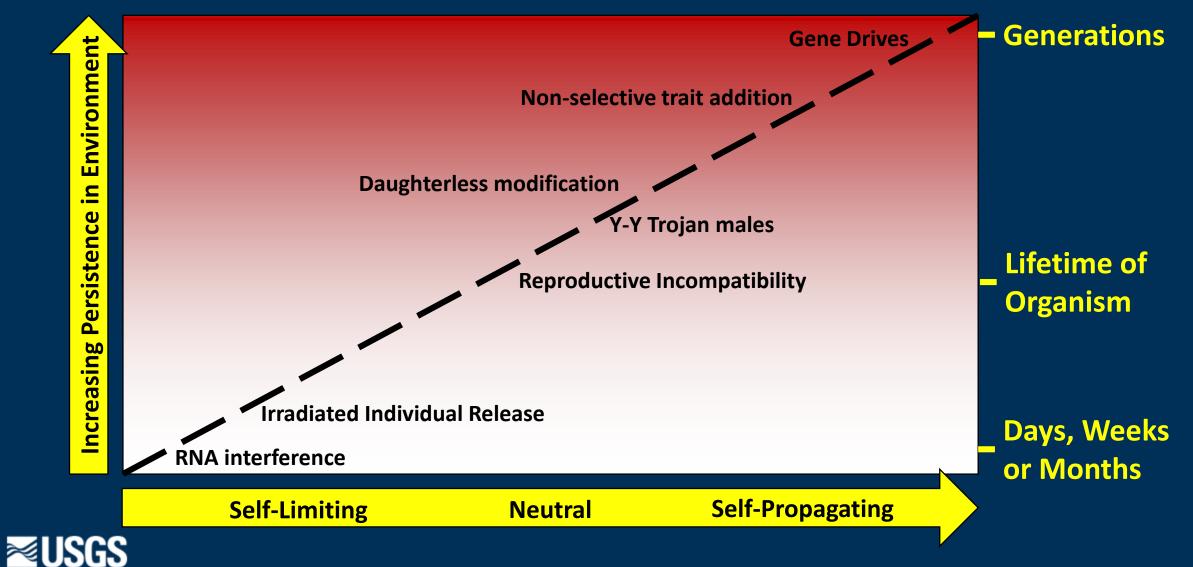
Great Lakes Panel on Aquatic Nuisance Species

12-November, 2019

Chris Merkes <u>cmerkes@usgs.gov</u> (608) 781-6316

U.S. Department of the Interior U.S. Geological Survey

What is genetic biocontrol?


Genetic biocontrol is the exploitation of genetics to get the organism to control *ITSELF*. (letting nature do the work for us)

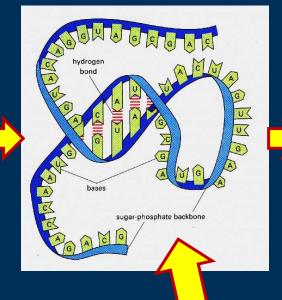
- Numerous technologies or strategies that can be used
- Optimal strategy depends on:
 - Biology / Life history
 - Risk tolerance
 - Size of invasion
 - Objective

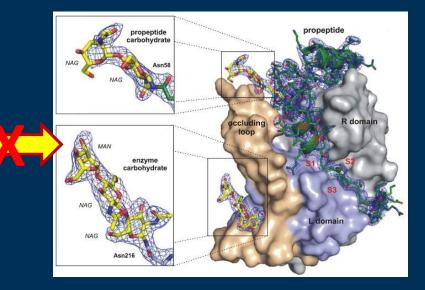
Environmental Persistence

RNA interference (RNAi)

PREMISE: Trick the organism into "thinking" important genes are unimportant on the cellular level.

- Mello and Fire got Nobel Prize in 2006
- Thousands of publications
- Use the organism's own molecular machinery to shut down cells.
- Specific to DNA sequence beyond just species, but targets genes of that species.


SELF-SABOTAGE You know you shouldn't but you just can't seem to help yourself...

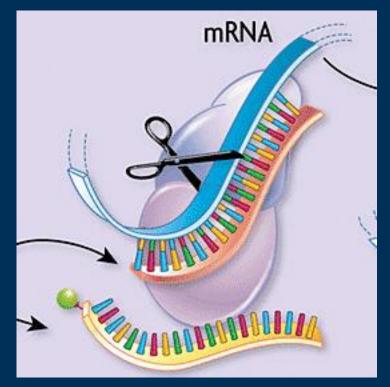


The Central Dogma of Biology

DNA -> RNA -> Protein

RNA interference targets RNA molecules for destruction thus preventing protein from being made

RNA interference


- RNAi tricks the cell into destroying its own mRNA
- RISC <u>R</u>NA <u>Induced Silencing</u> <u>C</u>omplex
- Small double-stranded RNA molecules guide RISC in what mRNA to cleave

We choose very specifically what genes to turn off We provide the small dsRNA, and the target individuals do the rest

RNA interference

- Potentially cheap to implement
- Total control of deployment
- Does not persist in the environment
- No off-target impacts currently known
- Used in agriculture for pest resistance
- Similar to chemical treatments currently in practice, but much more focused

Insect Genetic Technologies Research Coordination Network

Sterile Male Release Technique

PREMISE: Suppress reproduction by inducing failed mating

- Capture wild individuals and sterilize
 - Irradiation
 - Chemical sterilization

Aquiloni *et al*.

Great Lakes Fishery Commission

Sterile Male Release Technique

PREMISE: Suppress reproduction by inducing failed mating

- Balancing effective sterilization without altering their behavior
- Sterilization techniques can be risky to workers
- Need to release many individuals

Engineering Reproductive Incompatibility

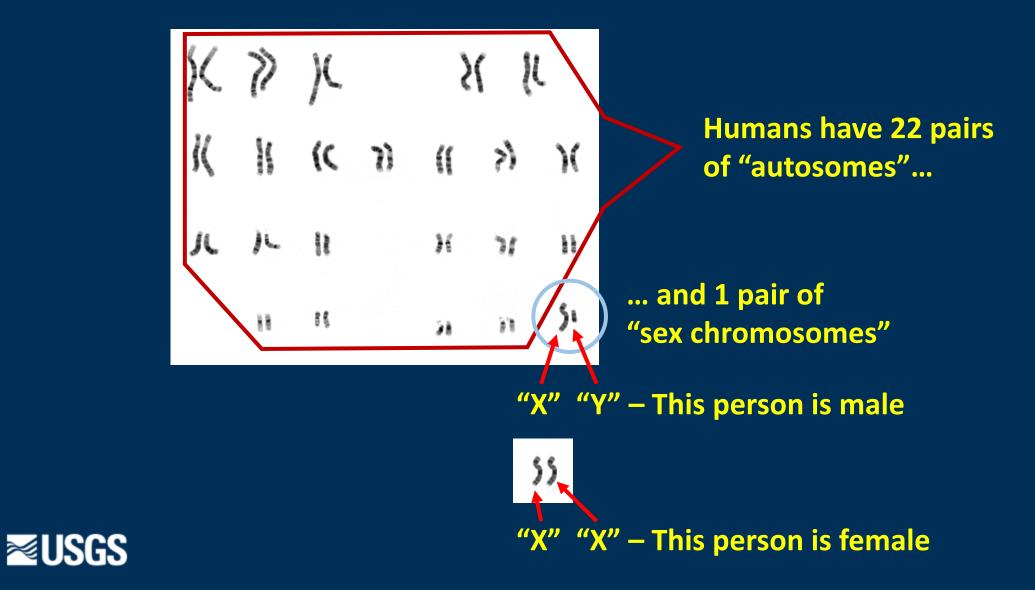
PREMISE: Suppress reproduction by inducing failed mating

- Engineered individuals that offspring are only viable when exposed to particular compound
- Make only male offspring viable
- Develop species-like barrier

University of Minnesota, MAISRC

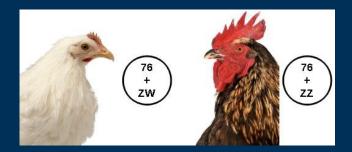
Oxitec

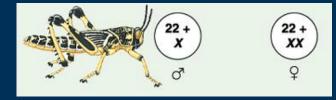
Y-Y male release

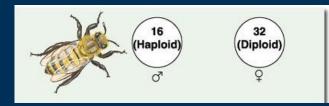

PREMISE: Skew sex ratios so that there are only males... Then the invader cannot reproduce.

 Won't work for all invasive species...

 Depends on XY sex determination, and some other factors.

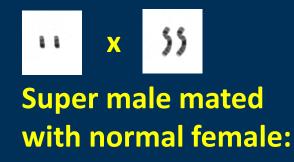


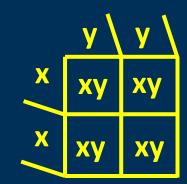

"Normal" Sex Determination



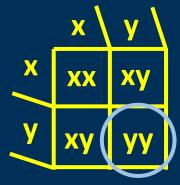
Other types of Sex Determination

- ZW Sex Determination
 - Chickens, Komodo Dragons, Giant River Prawn, Moths and Butterflies, Others...
- X0 Sex Determination
 - Grasshoppers, Crickets, Cockroaches, Others...
- Haplodiploid Sex Determination
 - Bees, Ants, Wasps, Thrips, Others...
- Temperature-Dependent
 Sex Determination
 - Reptiles, Possibly others...


Y-Y Male Release to control a population: How it works



50% male



Y-Y Male Release to control a population: How it's made

- X-Y genetically male fish will develop into phenotypic female if exposed to estradiol during development
- These X-Y egg producers can then be mated with males

- 25% female
- 50% normal male
- 25% super male

Y-Y Male Release to control a population: Considerations

Deal Breakers:

- Sex must be determined genetically with X-Y system with no environmental influence
- Individuals must not be able to spontaneously reverse sexes
- Aquaculture methods must be possible

Deal Makers:

- Low density target populations
- Short-lived species
- Harvestable

Y-Y Male Release to control a population: Considerations

Other Considerations:

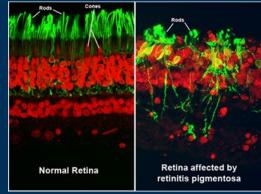

- Reversible
- Must release many super males
- Must continue for years (dependent on species)
- Releasing sex-hormone-treated fish (FDA regulation)

CRISPR gene drives

CRISPR: <u>Clustered Regularly Interspaced Short Palindromic Repeats</u>

 A method for editing genomes.

What's so special about CRISPR?


Compared to previous genome editing methods:

- Faster, Easier, and Cheaper
 - Days instead of weeks or months
 - Sequence-based targeting
 - Hundreds instead of Thousands of \$\$\$
- More reliable targeting
 - 95-98% fidelity
- Fewer off-target affects
 - Less chance of unintended consequences

What's so special about CRISPR?

- Originally discovered as a bacterial defense against viruses
 - Chops up viral DNA
- First U.S. human trials approved in 2016 for lung cancer patients
 - Cured Retinitis Pigmentosa
 - Cured Leukemia
 - Aids cure in development
 - Many genetic diseases curable
- Malaria Resistant Mosquitos in development

How CRISPR can help with invasive species

Gene Drive: A gene that is guaranteed to pass on to all offspring.

Can be:

- Lethal alleles
- Female sterility alleles
- Modified function alleles

Ethical Considerations

- Genetic modification has been around a long time
 - Crops, Dogs, Race horses
- Incredibly powerful tool
 - What we "can do" vs. what we "should do"?
- Public engagement
 - Interested parties
 - Scientists
 - Politicians
 - Public at large

What is genetic biocontrol?

Genetic biocontrol is the exploitation of genetics to get the organism to control *ITSELF*. (letting nature do the work for us)

- Numerous technologies or strategies that can be used
- Optimal strategy depends on:
 - Biology / Life history
 - Risk tolerance
 - Size of invasion
 - Objective

Chris Merkes – cmerkes@usgs.gov USGS – Upper Midwest Environmental Sciences Center La Crosse, Wisconsin (608) 781-6316

