Trait-based Approaches to Understanding and Predicting Harmful Algal Blooms

Elena Litchman

Carnegie Institution and Michigan State University

HABs are becoming more frequent but still hard to predict

METRO NEWS

Lake Erie harmful algal bloom less severe than expected. Why?

Updated Oct 5; Posted Oct 5

This map shows the height of the 2018 Lake Erie harmful algal bloom on Sept. 3. (NOAA)

Uncertainties:

- Magnitude
- Timing
- Species identity
- Toxicity level

Identity of HAB taxa (not only *Microcystis*)

Lake Superior (Dolichospermum)

Lake Baikal, Russia (Spirogyra and Dolichospermum)

Several key cHAB genera

- Microcystis
- Dolichospermum (aka Anabaena)
- Aphanizomenon
- Planktothrix

Key Questions in HAB Research

- What environmental factors stimulate HABs?
- How different are HAB taxa from each other and from non HAB taxa?
- What are the temporal trends in frequency, duration and composition of HABs?
- Can we predict HAB occurrence and severity?
- How do we prevent and mitigate HABs?

Key Questions in HAB Research

A need for a predictive mechanistic framework!

- Call we predict HAD occurrence and sevency:

• How do we prevent and mitigate HABs?

Trait-based Approaches

- The focus is on functional traits not on species per se
- Can help identify general patterns of community structure and dominance by certain groups
- Can help uncover mechanisms of community responses to environmental factors

What are the important traits?

Depends on the question but often:

- Growth rate
- Nutrient and light utilization traits
- Temperature traits
- Grazer resistance
- Buoyancy
- Resting Stages
- Toxin production
- N-fixation

Nutrient utilization traits

External nutrient concentration

Nutrient utilization traits

Michael R. Droop, circa 1980

Light utilization traits

Slope at origin = "growth affinity for light" = α

Next step:

- •Collect traits for a wide range of HAB and other taxa and compare them
- •Also use these traits to parameterize predictive models

Scaled nutrient uptake affinity in freshwater phytoplankton

Edwards et al. L&O 2012

Trait comparison: light traits Schwaderer et al. L&O 2011

Temperature traits

Cyanobacteria have higher T_{opt} and T_{max} (in temperate latitudes)

Thomas et al. GEB 2016

Multiple traits together

Temperature traits differences within HAB taxa

Cyanobacteria Nitrogen fixers vs non-fixers

Relative abundance

Env. Factor	N-fixers	Non-fixers
Temperature	(-)	+
log(TN)	ns	+
log(TP)	ns	ns
log(TN/TP)	-	ns
рН	+	+
log(total	-	ns
biovolume)		Kremer

Litchman L&O Lett 2023

Cyanobacterial isolates from the Great Lakes

>150 strains in culture (L. Superior, Michigan, Erie, Huron)

Carol Waldmann Rosenbaum

Cyanobacterial isolates from the Great Lakes

>150 strains in culture (L. Superior, Michigan, Erie, Huron)

Carol Waldmann Rosenbaum

Temperature curves for the GL isolates

What we can do:

- Collect trait data for diverse HAB taxa and compare them to non HAB taxa (multi-trait response surfaces)
 Inter- and intraspecific differences
- Determine trait values for key HAB taxa and what conditions select for certain traits
- Develop mechanistic models that include key traits to predict trait selection under different scenarios (mixing, nutrient levels, temperature, etc.)
- Test models with data