

# CHESTERFIELD TOWNSHIP BRANDENBURG PARK

LAKE CIRCULATION ANALYSIS

JULY 1, 2020



Water Scientists Environment Engineers

#### **PURPOSE & SCOPE**

- Evaluate water circulation in the near-shore areas to determine impacts from the proposed shoals and habitat improvements
- Use NOAA Huron-Erie Connecting Waterways Forecasting (HECWFS) model output to determine nearshore currents at the park.
- Develop HEC-RAS 2D model to evaluate circulation in the nearshore areas for existing and proposed conditions





#### HURON-ERIE CONNECTING WATERWAYS FORECAST SYSTEM

- NOAA model of the St. Clair River, Lake St. Clair, and the Detroit River.
- 36,477 Elements / 6 vertical layers
- Continuous simulation predicting water levels and currents
- Currents in Lake St. Clair are driven by flows from the St. Clair River and meteorological inputs (e.g. wind, temperature)





#### **HECWFS MODEL DATA ANALYSIS**

- Obtained model output for 6 cells adjacent to Brandenburg Park from NOAA for 2013 though 2019
- Computed depth-averaged current vectors for each element
- Developed rose plots showing the magnitude and direction of currents for each of the output cells
  - All Data
  - Summer (June September)



## LONGSHORE CURRENTS

- HECWFS model output for shows flows are parallel to the shoreline, with flows to the South-Southwest between 50% to 55% of the time.
- Current velocities ranged up to 0.7 ft/s, but were primarily less than 0.25 ft/s.



#### SUMMER CURRENTS

- HECWFS model output for June through September shows that currents flow to the South-Southwest along the shoreline <u>55%</u> <u>to 60%</u> of the time
- Median conditions at element 25462 show velocities flowing towards the southwest at <u>0.15 ft/s</u>
   Estimated flow rate using cell depth is <u>980 ft<sup>3</sup>/s</u>



- HECWFS model output used to define upstream flow and downstream water level boundary conditions.
- Boundaries moved away from the site to minimize influence of the boundary conditions on the model predictions at the site itself.
- 4' grid in Park area
  20' grid in outlying areas.



- Used site survey data and HECWFS model grid elevation to develop existing conditions bathymetry
- Grid was developed to align with shoals to capture flow interactions between the shoals





- Proposed bathymetry based on AutoCAD drawings from OHM Advisors
- Includes shoreline protection shoals, modified near-shore grading, and sloped bank with softened shoreline restoration in the center of the park.



- Existing currents are 0.03 ft/s to 0.12 ft/s, with the lowest at the shoreline.
- Currents are lower at the northern end of the park due to the impact of flows going around the land projection to the north.



- Velocities increase to a peak of 0.15 ft/s at the northern end of the park where flow will enter the area between the shoreline and the shoals.
- Low velocities in the shoreline restoration area.
- Shoals create wakes with lower velocities.



#### EXISTING FLUSHING IN NEAR-SHORE AREA

- Defined a control volume and analyzed the inflows and outflows under existing and proposed conditions.
- Existing Conditions Volume:
   296,000 ft<sup>3</sup>
- Net flow rate through control volume: 50.7 ft<sup>3</sup>/s
- Steady state detention time: 1.6 hours



#### PROPOSED FLUSHING IN NEAR-SHORE AREA

- Proposed Conditions Volume: 301,000 ft<sup>3</sup> [Increase of 1.7%]
- Net flow rate through control volume: 38.8 ft<sup>3</sup>/s [Decrease of 23.5%]
- Steady state retention time: 2.2 hours [Increase of 37.5%]





#### **CONCLUSIONS**

- HECWFS Model Data shows currents run parallel to the shore in this area.
- Approximately 55% to 60% of the time the currents flow to the southwest, with a median velocity of 0.15 ft/s during the summer (June – September)
- The HEC-RAS 2D model was developed to analyze the impact of the proposed park improvements on the near-shore velocities and flushing based on the median flows.
- Model results show that park improvements modify velocity distributions, and slightly increase the residence time in the near-shore of the park.



#### $\bullet \bullet \bullet \bullet$

# **THANK YOU**



bcousino@limno.com



www.limno.com



Water Scientists Environment Engineers

#### **CURRENT ROSE PLOTS**

Element 25457
Element 25458

Element 25458



#### **CURRENT ROSE PLOTS**

Element 25459
Element 25460

Element 25460



#### **CURRENT ROSE PLOTS**

Element 25461
 Element 25462

