Using environmental (e)DNA techniques to better understand aquatic ecosystems

Kim Scribner and

 John RobinsonDepartment of Fisheries and Wildlife Michigan State University

Road map for talk

Part I - Lessons learned and nuances of single species and multiple species eDNA methodology for aquatic species

Part II - Applications mostly focusing on aquatic plant and animal multi-species methods or 'amplicon sequencing' (metabarcoding)

What is environmental (e)DNA and how is it used?

- All living organisms leave traces of cell debris and extracellular DNA in their environment
- Can be used as a quantitative tool to estimate species presence/absence and relative biomass across sampling sites, including AIS and T\&E species

Metabolic
eDNA is an effective non-invasive method to quantify community composition and diversity

- One sample contains information about the whole community - from fish to invertebrates to plants to microorganisms
- Physical and biotic aquatic lake-/river-scape and terrestrial data bases are available to interpret communitv composition

Environmental (e)DNA in
 Environmental Sciences

Step 1 - obtain environmental sample

Step 2 - PCR amplification of DNA

Step 3 - screen DNA for presence or taxonomic composition

Factors to consider when designing an aquatic eDNA study --- forces that determine amount and location of eDNA in an aquatic system

Multiple methods of sample collection

eDNA QA/QC needs: antiseptic methods and verification

PCR or qPCR allows detection of a specific target species

DNA

Sample scoring: Only samples 3, 5, 6 \& 10 show evidence of presence of target species DNA DNIDI

$$
\begin{array}{lllllllllll}
\mathrm{L} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10
\end{array}
$$

Modified from Herder et al. 2014
Visualization of amplification products

From www.vet.upenn.edu
\checkmark
Amplification of eDNA samples using PCR or qPCR

Metabarcoding allows detection of multiple target species

Important issues for single species eDNA barcoding

- Specificity - establishing confidence that the exact species (and no other) is being amplified
Goal - minimize false positives (amplification of wrong species) --- typically quantified across multiple DNA sample concentrations
- Sensitivity - the levels (quantities) of DNA that can be consistently detected

Goal - minimize false negatives (failure to amply DNA when present but in low concentration) ------ typically quantified using qPCR

Limits of detection (LOD) - LOD is defined as the lowest copy number where 95% of the replicates per concentration were positive.

Limits of quantification (LOQ) - LOQ represents the lowest concentration of target DNA that can be quantified within an assay. Klymus et al. (2019).

- Protocols should be evaluated in the context of the environmental conditions expected in the field (e.g., with inhibitors, etc present)
- Protocols should include tests for contamination (e.g., with no DNA controls)

Taqman assay - a more sensitive single species PCR assay

Visualization of PCR products for single species detections (yes/no)

Visualization of amplification products using 'staining' and gel electrophoresis

More sensitive taqman qPCR reactions

A
Amplification Plot

1: 1×10^{9} copies $/ \mu \mathrm{l}$
2: 1×10^{8} copies $/ \mu \mathrm{l}$
5: 1×10^{5} copies $/ \boldsymbol{\mu l}$
9: 1×10^{1} copies $/ \mu \mathrm{l}$ 10: no-template control
3: 1×10^{7} copies/ $\mu \mathrm{l}$
6: 1×10^{4} copies $/ \mu \mathrm{l}$
7: 1×10^{3} copies/ $/ \mathrm{l}$
4: 1×10^{6} copies $/ \mu \mathrm{l}$
8: 1×10^{2} copies $/ \mu \mathrm{l}$

B
Standard Curve

Quantity
(1) PCR product length,
(2) nucleotide composition

Results of grass carp qPCR - 3 samples, each assayed with 4 replicates of each of 3 probes. Positive results are given as positive (not UD) CT values........Question-----Is there a difference in 'reliability' between positive Results across the 3 samples?

Rep	Sample1	probe	dye	CT	Samp	prob	dye	CT	Sample3	probe	dye	CT
1	DR0718-02	GCTM10	VIC	UD	DR0818-01	GCTM10	VIC	UD	HP1018-01	GCTM10	VIC	38.959
2	DR0718-02	GCTM10	VIC	UD	DR0818-01	GCTM10	VIC	UD	HP1018-01	GCTM10	VIC	UD
3	DR0718-02	GCTM10	VIC	UD	DR0818-01	GCTM10	VIC	40.238	HP1018-01	GCTM10	VIC	UD
	DR0718-02	GCTM10	VIC	UD	DR0818-01	GCTM10	VIC	UD	HP1018-01	GCTM10	VIC	40.885
4	DR0718-02	GCTM22	FAM	UD	DR0818-01	GCTM 22	FAM	UD	HP1018-01	GCTM 22	FAM	36.123
2	DR0718-02	GCTM 22	FAM	UD	DR0818-01	GCTM 22	FAM	UD	HP1018-01	GCTM 22	FAM	UD
3	DR0718-02	GCTM 22	FAM	37.082	DR0818-01	GCTM 22	FAM	UD	HP1018-01	GCTM 22	FAM	UD
4	DR0718-02	GCTM22	FAM	UD	DR0818-01	GCTM 22	FAM	UD	HP1018-01	GCTM 22	FAM	UD
1	DR0718-02	GCTM32	NED	UD	DR0818-01	GCTM32	NED	UD	HP1018-01	GCTM 32	NED	38.895
2	DR0718-02	GCTM32	NED	39.294	DR0818-01	GCTM 32	NED	UD	HP1018-01	GCTM32	NED	UD
3	DR0718-02	GCTM32	NED	38.209	DR0818-01	GCTM 32	NED	UD	HP1018-01	GCTM 32	NED	UD
4	DR0718-02	GCTM32	NED	UD	DR0818-01	GCTM32	NED	UD	HP1018-01	GCTM32	NED	38.300

Primers developed by USFWS - LaCrosse lab

Single species detection using eDNA-a field application for grass carp in Lake Erie

Boat Electro-Fishing or boat Electro-Fishingtrammel net combination ("combo") Collected species including surrogate species Common carp (COC) Bigmouth (BMBF) and smallmouth buffalo (SMBF)
10 eDNA samples/site/month

$\mathrm{N}=81$ eDNA detections

How to assemble a DNA sequence baseline data base?
First - Determine what species we can expect to observe

Ver-bNetr

Considerations for eDNA Metabarcoding

Second, DNA marker choice is critical

- Short gene fragments likely persist longer in the environment
- Long fragments allow for more species-level identification
- Need a 'base-line' database of sequences at the chosen marker (BOLD, GenBank)

SYSTEMS

Third - Developing sequence baseline via GenBank or Sanger sequencing

Option 1 - Do your own sequencing

Option 2 - Query sequence repository by species, gene, gene region

Michigan State/Michigan DNR/EGLE eDNA metabarcoding Advances: from aquatic vertebrates to plants to entire ecosystems

SCIENTIFIC REPRTS

OPEN Ecosystem biomonitoring with eDNA: metabarcoding across the tree of life in a tropical marine environment

Michael Stat \mathscr{O}^{1}, Megan J. Huggett \mathbb{C}^{2}, Rachele Bernasconi², Joseph D. DiBattista \mathscr{C}^{1}, Tina E. Berry ${ }^{1}$, Stephen J. Newman ${ }^{1,3}$, Euan S. Harvey $\mathbb{C}^{1} \&$ Michael Bunce ${ }^{1}$ rbcL

Fourth - Taxonomic Database Development

12S \& 16 S sequences gathered from
GenBank and produced in lab
>136 and 140 native fish species
>34 and 36 non-native (AIS) fish
species
>98 and 102 non-fish vertebrate
species (e.g. mammals, birds, reptiles)
Primary focus on invasive fish species

- COI sequences gathered from GenBank and produced in lab
> 1,865 arthropod
> 200 mollusk and gastropod species
$>$ (including 27 and 18 AIS, respectively)
- rbcL sequences gathered from GenBank and produced in lab
> 2,211 plant species (including 80 AIS)

AIS Common name	AIS Sci.name
Alewife	Alosa pseudoharengus
Northern snakehead	Channa argus
Grass carp	Ctenopharyngodon idella
Common carp	Cyprinus carpio
Ruffe	Gymnocephalus cernua
Silver carp	Hypophthalmichthys molitrix
Bighead carp	Hypophthalmichthys nobilis
Orange spotted sunfish	Lepomis humilis
Ide	Leuciscus idus
Pond loach	Misgurnus anguillicaudatus
Black carp	Mylopharyngodon piceus
Round goby	Neogobius melanostomus
Sea lamprey	Petromyzon marinus
Stone moroko	Pseudorasbora parva
Amur bitterling	Rhodeus sericeus
Zander	Sander lucioperca
Rudd	Scardinius erythrophthalmus
Wels catfish	Silurus glanis
Tench	Tinca tinca

Pukk et al. in 2021; Diversity \& Distributions

Building your 'baseline’ sequence data base via GENBANK or your own Sanger sequencing

Crayfish example

K6458271_Procambarus_clarkii kT0364441_Procambarus_clarkii KJ6458241_Procambarus_clarkii K66458231_Procambarus_clarkii AF4360401_Procambarus_clarkii KK6458221_Procambarus_Clarkii K66458341_Procambarus_clarkii KK6458181_Procambarus_clarkii K66458321_Procambarus_clarkii JX127827_Procambarus_acutus KF771116_Procambarus_acutus F5619805_Procambarus_acutus FJ619804_Procambarus_acutus EU433915_Procambarus_acutus EF012354_Procambarus_acutus KC1634911_Fallicambarus_fodiens KC1634701_Fallicambarus_fodiens

Considerations

- Often times sequences in DNA data base repositories originate from locales far removed from your study area
- Often times sequences from the same gene regions do not overlap completely, reducing the length of homologous regions
- Classification should embrace intra-specific diversity (how similar is a sequence- no. base pair differences) to be treated as the same species vs higher taxonomic classification?

Fifth - Bioinformatic Data Analysis

- Sequence data was analysed using computer pipeline - e.g., Mothur
- Reads were aligned to the taxonomic database
- Sequences were clustered into OTUs
- Prior to the analysis negative controls were used to account for contamination
- Unclassified OTUs subjected to BLAST
Community matrix

Sample	$\&$	$\&$..	$\&$
ID1	11100	690	\ldots	1232
ID2	3334	45	\ldots	0
..	\ldots	\ldots	..	\ldots
ID413	2	3076	..	5

ID of target species'
DNA sequences
in each sample

Species/Abbrv
1. KM267719_Lampetra_appendix
2. K12267716_Ichthyomyzon_fossor
3. K12267717_Ichthyomyzon_unicuspis
4. U11890_Petromyzon_marinus
5. AF125594_Polyodon_spathula
6. AF125594_Polyodon_spathula_modified
7. AF125595_Acipenser_fulvescens
8. KU985081_Acipenser_fulvescens
9. JF912031_Lepisosteus_oculatus
10. AB042861_Lepisosteus_oculatus
11. DQ536423_Lepisosteus_osseus
12. JF912032_Lepisosteus_osseus
13. JF912030_Lepisosteus_osseus
14. JF912036_Lepisosteus_osseus
15. LNG00001_Lepisosteus_osseus
16. AB042952_Amia_calva
17. AP009499_Hiodon_tergisus
18. KJ564181_Anguilla_rostrata
19. AF266497_Anguilla_rostrata
20. MG570421_Alosa_pseudoharengus
21. NC037017_Alosa_aestival

Analyses done at
HPCC - high performance
computing cluster

Community Matrix of metabarcoding eDNA (16S rDNA) for crayfish in Detroit metro-area wetlands

Database developments for plants

- \quad A. fulvescens
- $\quad=\mathrm{S}$. trutta
- $=\mathrm{C}$. commersonii
- $\quad=\mathrm{L}$.
osseus

- Reviewed literature and availability of sequences
- ITS2, MatK, rbcL, tRNA-Leu p6 loop region
- Michigan's AIS Watchlist, and the Michigan EGLE p51 form
- queried NCBI for sequences of interest

Our experiences

- We reviewed the plant barcoding literature and found that most of the single-species assays developed thus far amplified loci that are too large (i.e., > 600 bp) for sequencing on Illumina's MiSeq platform (Hollingsworth et al. 2011) from eDNA.
- Interrogation of aquatic plant communities was conducted based on eDNA samples collected from fish surveys
- For tRNA-Leu and rbcL where metabarcoding data was collected from inland lakes, many aquatic plant AIS species had native congeners that could not be distinguished to species
- Based on the timing and location of sampling, in many samples and inland lakes that majority of sequences were from terrestrial and wetlands plant taxa

Part II - Applications - Michigan inland lake

 communities
MSU eDNA Metabarcoding Projects

Objectives

- Detect aquatic invasive species
- Compare with traditional gear surveys
- What lake characteristics predict diversity? Non-native prevalence?

22 inland lakes sampled (2016-2018)

- Sard et al. (2019) - 8 lakes (fish)
- Pukk et al. (2021) - 22 lakes (fish)
- Costello et al. (in prep) - 22 lake (plants)*

original Article
Comparison of fish detections, community diversity, and relative abundance using environmental DNA metabarcoding and traditional gears

RESEARCH ARTICLE
eDNA metabarcoding in lakes to quantify influences of landscape features and human activity on aquatic invasive species prevalence and fish community diversity

Lilian Pukk ${ }^{1}$ | Jeannette Kanefsky ${ }^{1}$ | Amanda L. Heathman ${ }^{1}$ | Ellen M. Weise ${ }^{1}$ | Lucas R. Nathan ${ }^{2}$ | Seth J. Herbst ${ }^{2} \mid$ Nicholas M. Sard $^{3} \mid$ Kim T. Scribner ${ }^{1,4}$ | John D. Robinson ${ }^{1}$ (ㄷ)

Sampled Lakes

ARTICLE
A Landscape-Based Classification of Fish Assemblages in Sampled and Unsampled Lakes

Kevin E. Wehrly,* James E. Breck, Lizhu Wang, and Lidia Szabo-Kraft Institute for Fisheries Research, Michigan Department of Natural Resources and University of Michigan Instiut e for Fisherres Research, Michitan Department of Natural Resources and Uiverst
212 Museums Annex, 1109 North University Avenue, An Arbor, Michigan 48109, USA

Sampled Lake Classes

Number		
$\begin{array}{ccc}\text { Lake } & & \\ \text { Class } & & \text { Total } \\$ 1		Percent
2		6\end{array}$) 45$
3	2	27
4	0	0
5	2	9
6	2	9

Lake Selection

Represent environmental variation

- Lake area - 14 to 8000 hectares
- Max depth - 2 to 87 m
- Development - 1.5% to $90 \%+$
- Connectivity - isolated to highly connected

Include...

- Lakes popular with anglers (Houghton / Higgins)
- Highly developed areas (Cass / Livingston Co.)

- Deep, cold lakes (Torch Lake)

Prioritized lakes with fish survey data available

eDNA Sampling Methods

Paired samples with Status and Trends (13 lakes)

- 30 to 57 samples per lake, over 950 total samples
- Collections include surface and benthic water samples
- Negative controls processed in the field and lab

1L filtered on site with Smith-Root ANDe backpack

- Single-use filter housings limit potential contamination
- DNA extraction \rightarrow PCR (2 markers) \rightarrow sequencing

Objective 1 - evaluate eDNA relative to traditional gear

1. With traditional gear - paired and supplemented
2. Without traditional gear - random

Results - example for 1 lake of raw eDNA and traditional community matrices

Fish Species Detected
eDNA vs. Traditional Gear

eDNA

vs

Traditional

Both eDNA markers detect more species than traditional gear (12 of 13 lakes)

Information on Abundance / Biomass eDNA vs. Traditional Gear

Comparing estimates of relative abundance from eDNA to those from Status and Trends

- Significant correlations b/w rank abundance (traditional gear) and eDNA detection rate

eDNA vs Traditional gear

-eDNA samples have less inter-sample variation in fish species
-Different gear types are known to be selective for specific fish species

Sard et al. (2020) Environmental DNA

Non-metric multidimensional scaling plot, comparing Bray-Curtis distance matrices among 12 S (red), 16S (blue) and traditional (green) sampling approaches.

Species accumulation curve for traditional and eDNA sampling approaches

The eDNA approach detected round goby in more samples than traditional gear (eDNA 6 of 8 lakes vs traditional 3 of 8 lakes)

Proportion of aquatic invasive fish species reads and the counts of AIS per lake (16S) for 22 Michigan inland lakes.

Objective 2 - Estimation of Detection Probability Occupancy Modeling - eDNA vs. Traditional Gear

Information on Abundance / Biomass Mock Community Samples

"Mock communities"

- Mixtures of DNA from 10 species
- Three mixtures with different relative concentrations

Results

- DNA concentration tightly correlated with read counts ($r=0.68$)
- Some evidence of amplification bias for particular taxa (sea lamprey)

Objective 3 - Influences of Lake Characteristics

What lake attributes contribute to variation in...

- Diversity of the fish community?
- Prevalence of non-native species?

Water quality / ecological data from LAGOS database

- 51,000 total lakes (> 4 ha)
- 15,000+ lakes in Michigan
- Climate, land use, area, depth, connectivity, water quality...

LAGOS-NE: a multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of US lakes
Patricia A Soranno , Linda C Bacon, Michael Beauchene, Karen E Bednar, Edward G Bissell, Claire K Boudreau, Marvin G Boyer, Mary T Bremigan, Stephen R Carpenter, Jamie W Carr ... Show more
GigaScience, Volume 6, Issue 12 , December 2017, gix101,

LAGOS - lake multi-scaled geospatial and temporal database

Data Article © open Access © (1)
LAGOS-US LOCUS v1.0: Data module of location, identifiers, and
physical characteristics of lakes and their watersheds in the conterminous U.S.
Kendra Spence Chervelil Patricia A. Soranno. Ian M. McCullough. Katherine E. Webster. Lauren K.
Kendra Spence Cheruvel
Rodriguez Nicole

Species Richness

Area of upstream lakes (connectivity) was positively related to fish species richness

- Both eDNA markers show this relationship
- Connectivity, rather than lake size, drives diversity

AIS Prevalence

Evidence for positive relationships between...

- AIS prevalence and area of upstream lakes
- Number of AIS fish and \% developed or agricultural land (disturbance / development)

Objective 4-Spatial Information in the Data

Visualize patterns of species richness and sequence abundance

Identify associations between physical lake features and...

- Species richness?
- AIS sequence abundance?

Prioritizing control efforts

- Targeted removal of invasive species
- Specific areas for follow-up sampling?

eDNA metabarcoding in lakes to quantify influences of landscape features and human activity on aquatic invasive species prevalence and fish community diversity

```
Lilian Pukk }\mp@subsup{}{}{1}| Jeannette Kanefsky '1 | Amanda L. Heathman r | Ellen M. Weise ' $ 
Lucas R. Nathan2 | Seth J. Herbst }\mp@subsup{}{}{2}| Nicholas M. Sard ' | Kim T. Scribner ',4 |
John D. Robinson }\mp@subsup{}{}{1
```


(b) $\quad N$. melanostomus relative abundance

Selecting a Metabarcoding Marker for Plants

Sard et al. (unpubl) MSU - tRNA-Leu

Fahner et al. (2016) - ITS2 or rbcL

Coghlan et al. (2019) assessed both markers

- Improved species-level detection with rbcL

Taxonomic database

- 3174 unique sequences from 2212 species
- Habitat and native / non-native classifications

PLOS | оne

Large-Scale Monitoring of Plants through Environmental DNA Metabarcoding of Soil: Recovery, Resolution, and Annotation of Four DNA Markers

Environmental DNA
Development of an environmental DNA metabarcoding assay for aquatic vascular plant communities

[^0]
Species Richness by Group

Species richness varied across lakes

- 18 species detected in Mullett Lake
- 85 species detected in Pentwater Lake

48-77\% of detected species were from terrestrial habitats

GLMs: Species Richness of the Plant Community

Plant species richness best predicted by Julian Day (sampling)

Fewer plant species detected in samples collected /ater in the summer

Model	df	logLik	AICc	Δ AIC	$\boldsymbol{\omega}$
Julian day	3	-90.184	187.7	0.00	0.940
log.lake.area	3	-94.002	195.3	7.64	0.021
Null	2	-95.682	196.0	8.30	0.015
IWS.stream.density	3	-94.809	197.0	9.25	0.009
log.area.upstream.lakes	3	-95.194	197.7	10.02	0.006
max.depth	3	-95.484	198.3	10.60	0.005
perc.agric.dev.land	3	-95.682	198.7	11.00	0.004
Full	8	-89.274	205.6	17.92	0.000

Non-native Plant Species Richness

Across habitats (aquatic, terrestrial, wetland), 3 to 24 non-native species detected per lake

- Mullett Lake - 3 non-native species
- Long Lake - 24 non-native species

Lake

Non-native Aquatic Plant Detections*

White Water Lily Nymphaea alba 20 lakes

Purple Loosestrife Lythrum salicaria 8 lakes

Common reed
Phragmites australis* Holloway \& Cass

Flowering Rush Butomus umbellatus Cass \& Five Channels

Spiny Water-Nymph Najas marina

Austin

Brittle Water-Nymph Najas minor Thompson

Eurasian Watermilfoil?
Myriophyllum sp.* 16 lakes (1-26 samples)

Comparison with DEQ/EGLE surveys

11 lakes with DEQ/EGLE survey data (2016-2018): 13 non-native plants

- 5 of 13 identified at species level with $r b c L$

Phragmites australis
$1 / 3+1$

Fallopia japonica 0/1 + 1

Butomus umbellatus
1/2

Frangula alnus $1 / 1+2$

- 4 of 13 with possible genus-level detections

Proportional Representation of Non-native Species

Non-native representation varied widely across lakes

- Kimball and Pickerel Lakes < 0.5\% non-native
- Mullett Lake >50\% non-native

On average, 14.6% of reads were attributed to non-native plants

GLMs: Proportional Representation of Non-native Plants

Proportion of reads attributed to non-native plants was related to lake area

- Torch Lake - 25\%
- Houghton Lake - 32\%
- Mullett Lake - 52\%

Model	df	logLik	AICc	$\boldsymbol{\Delta A I C}$	$\boldsymbol{\omega i}$
log.lake.area	3	26.291	-45.2	0.00	0.975
Natural	6	27.739	-37.9	7.37	0.024
Full	9	28.900	-24.8	20.45	0.000
sqrt.boat.ramp.density	3	13.574	-19.8	25.43	0.000
Anthropogenic	5	15.225	-16.7	28.55	0.000
Null	2	10.490	-16.3	28.90	0.000
dist.weig.pop	3	11.807	-16.3	28.97	0.000
max.depth	3	11.470	-15.6	29.64	0.000
IWS.stream.density	3	11.211	-15.1	30.16	0.000
perc.agric.dev.land	3	10.829	-14.3	30.93	0.000
log.area.upstream.density	3	10.581	-13.8	31.42	0.000

Summary

Surprising amount of terrestrial signal

- Highest in areas with low human impact

Species richness highest earlier in the year

- Partially driven by terrestrial taxa
- Inconsistent with periods of higher growth (aquatics)

Several common non-native spp. detected

- Non-native representation increased with lake size
- Limited resolution to species level with rbcL

Considerations for eDNA Metabarcoding

Marker choice is critical

- Short gene fragments likely persist longer in the environment
- Long fragments allow for more species-level identification
- Need a database of sequences at the chosen marker (BOLD, GenBank)

Connections with abundance / biomass

- Relationships are influenced by a wide variety of biotic and abiotic factors
- Biotic - density, other community members, deposition, reproductive status
- Abiotic - pH, temperature, flow, sampling season

Introduced
Potential for false-positive detections

- Species-specific eDNA analysis
- May require follow-up sampling

Recommendations

Plant eDNA metabarcoding has potential...

- Need markers with species-level resolution
- Timing of sampling is important

Likely best if paired with other approaches

- Traditional surveys
- Species-specific eDNA assays (potentially using the same samples)

Develop new markers to improve resolution

- Longer sequences?
- Plant group-specific primers?
- Expand on existing sequence repositories (ITS2, trnL, matK)

Acknowledgements

Michigan DNR / EGLE

Seth Herbst
Lucas Nathan
Billy Keiper
Sarah LeSage

MSU Fisheries \& Wildlife
Jeannette Kanefsky
Nick Sard (SUNY Oswego)
Lilian Pukk (EMU)
Antonio Castilla (MSU Texas)
Amanda Heathman
Ellie Weise

Funding

Great Lakes Restoration Initiative Michigan DNR

MSU Research Support RTSF Genomics Core ICER High Performance Computing Cluster

Proportion of rbcL plant sequences per taxonomic group per lake and total across all 22 sampled lakes

[^0]: Stephanie A. Coghlan ${ }^{1} \mid$ Aaron B. A. Shafer ${ }^{1,2}$ (C) \mid Joanna R. Freeland ${ }^{1,3}$ (©)

