Using environmental (e)DNA techniques to better understand aquatic ecosystems

Kim Scribner and John Robinson

Department of Fisheries and Wildlife Michigan State University

email:

scribne3@msu.edu

Road map for talk

Part I – Lessons learned and nuances of single species and multiple species eDNA methodology for aquatic species

Part II – Applications mostly focusing on aquatic plant and animal multi-species methods or 'amplicon sequencing' (metabarcoding)

What is environmental (e)DNA and how is it used?

- All living organisms leave traces of cell debris and extracellular DNA in their environment
- Can be used as a quantitative tool to estimate <u>species</u> presence/absence and relative biomass across sampling sites, including AIS and T&E species
- eDNA is an effective <u>non-invasive method</u> to quantify <u>community</u> composition and diversity
- One sample contains information about the whole community – from fish to invertebrates to plants to microorganisms
- Physical and biotic aquatic *lake-/river-scape* and terrestrial data bases are available to interpret community composition

g7D0km-clinart ing

Environmental (e)DNA in Environmental Sciences

Step 1 – obtain environmental sample

Burchfieldpenny.org

Step 2 – PCR amplification of DNA

or

Step 3 – screen DNA for presence or taxonomic composition

Modified from Herder et al. 2014

Single Species Analyses

Species (yes/no) and 'relative abundance'

Multiple Species Analyses

- Community composition
- Species relative abundance

Factors to consider when designing an aquatic eDNA study --- forces that determine amount and location of eDNA in an aquatic system

Factors affecting eDNA deposition and loss

Multiple methods of sample collection

https://www.smith-root.com/edna/edna-sampler

eDNA QA/QC needs: antiseptic methods and verification

//mresbec.wordpress.com/2017/10/26/saving-the-world-from-alien-invasion-early-detection-with-edna/

samples using PCR or qPCR

amplification products

Metabarcoding allows detection of <u>multiple</u> target species

Important issues for single species eDNA barcoding

• **Specificity** – establishing confidence that the exact species (and no other) is being amplified

Goal – minimize false positives (amplification of wrong species) --- typically quantified across multiple DNA sample concentrations

 Sensitivity – the levels (quantities) of DNA that can be consistently detected Goal – minimize false negatives (failure to amply DNA when present but in low concentration) ----- typically quantified using qPCR

Limits of detection (LOD) - LOD is defined as the lowest copy number where 95% of the replicates per concentration were positive.

Limits of quantification (LOQ) – LOQ represents the lowest concentration of target DNA that can be quantified within an assay. Klymus et al. (2019).

- Protocols should be evaluated in the context of the environmental conditions expected in the field (e.g., with inhibitors, etc present)
- expected in the field (e.g., with inhibitors, etc present)
 Protocols should include tests for contamination (e.g., with no DNA controls)

Taqman assay – a more sensitive *single species* PCR assay

Visualization of PCR products for single species detections (yes/no)

Modified from Herder et al. 2014

Visualization of amplification products using 'staining' and gel electrophoresis

More sensitive taqman qPCR reactions

Results of grass carp qPCR – 3 samples, each assayed with 4 replicates of each of 3 probes. Positive results are given as positive (not UD) CT values......Question----Is there a difference in 'reliability' between positive Results across the 3 samples?

Rep	Sample1	probe	dye	СТ	Sample2	probe	dye	CT	Sample3	probe	dye	СТ
1	DR0718-02	GCTM10	VIC	UD	DR0818-01	GCTM10	VIC	UD	HP1018-01	GCTM10	VIC	38.959
2	DR0718-02	GCTM10	VIC	UD	DR0818-01	GCTM10	VIC	UD	HP1018-01	GCTM10	VIC	UD
3	DR0718-02	GCTM10	VIC	UD	DR0818-01	GCTM10	VIC	40.238	HP1018-01	GCTM10	VIC	UD
	DR0718-02	GCTM10	VIC		DR0818-01	GCTM10	VIC	UD	HP1018-01	GCTM10	VIC	40.885
4	() () () () () () () () () ()	-		UD	DR0818-01	GCTM22	FAM	UD	HP1018-01	GCTM22	FAM	36.123
1	DR0718-02	GCTM22	FAM	UD	DR0818-01	GCTM22	FAM	UD	HP1018-01	GCTM22	FAM	UD
2	DR0718-02	GCTM22	FAM	UD	DR0818-01	GCTM22	FAM	UD	HP1018-01	GCTM22	FAM	UD
3	DR0718-02	GCTM22	FAM	37.082								
4	DR0718-02	GCTM22	FAM	UD	DR0818-01	GCTM22	FAM	UD	HP1018-01	GCTM22	FAM	UD
1	DR0718-02	GCTM32	NED	UD	DR0818-01	GCTM32	NED	UD	HP1018-01	GCTM32	NED	38.895
2	DR0718-02	GCTM32	NED	39.294	DR0818-01	GCTM32	NED	UD	HP1018-01	GCTM32	NED	UD
3	DR0718-02	GCTM32	NED	38.209	DR0818-01	GCTM32	NED	UD	HP1018-01	GCTM32	NED	UD
4	DR0718-02	GCTM32	NED	UD	DR0818-01	GCTM32	NED	UD	HP1018-01	GCTM32	NED	38.300

Bopp et al. (in review)

Single species detection using eDNA-a field application for grass carp in Lake Erie

Boat Electro-Fishing or boat Electro-Fishingtrammel net combination ("combo") Collected species including surrogate species Common carp (COC) Bigmouth (BMBF) and smallmouth buffalo (SMBF) 10 eDNA samples/site/month

eDNA

N=81 eDNA detections

N=0 fish captured

Bopp et al. (in review)

How to assemble a DNA sequence baseline data base? First – Determine what species we can expect to observe

Considerations for eDNA Metabarcoding

Second, DNA marker choice is critical

- Short gene fragments likely persist longer in the environment
- Long fragments allow for more species-level identification
- Need a 'base-line' database of sequences at the chosen marker (BOLD, GenBank)

Third - Developing sequence baseline via GenBank or **Sanger sequencing**

Template

DNA Polymerase

Primer

and chain

Reaction Mixture

Primer

ddNTPs

ddttp 🗧 ddCtp 🔵

ddatp 🔵 ddgtp 🤤

Option 1 - Do your own sequencing

Option 2 - Query sequence repository by species, gene, gene region

Michigan State/Michigan DNR/EGLE eDNA metabarcoding Advances: from aquatic vertebrates to plants to entire ecosystems

Fourth - Taxonomic Database Development

12S & 16S sequences gathered from GenBank and produced in lab

▶136 and 140 native fish species

➤ 34 and 36 non-native (AIS) fish species

▶98 and 102 non-fish vertebrate

species (e.g. mammals, birds, reptiles)

Primary focus on invasive fish species

- COI sequences gathered from GenBank and produced in lab
 - > 1,865 arthropod
 - > 200 mollusk and gastropod species
 - (including 27 and 18 AIS, respectively)
- rbcL sequences gathered from GenBank and produced in lab
 - > 2,211 plant species (including 80 AIS)

AIS Common name	AIS Sci.name					
Alewife	Alosa pseudoharengus					
Northern snakehead	Channa argus					
Grass carp	Ctenopharyngodon idella					
Common carp	Cyprinus carpio					
Ruffe	Gymnocephalus cernua					
Silver carp	Hypophthalmichthys molitrix					
Bighead carp	Hypophthalmichthys nobilis					
Orange spotted sunfish	Lepomis humilis					
Ide	Leuciscus idus					
Pond loach	Misgurnus anguillicaudatus					
Black carp	Mylopharyngodon piceus					
Round goby	Neogobius melanostomus					
Sea lamprey	Petromyzon marinus					
Stone moroko	Pseudorasbora parva					
Amur bitterling	Rhodeus sericeus					
Zander	Sander lucioperca					
Rudd	Scardinius erythrophthalmus					
Wels catfish	Silurus glanis					
Tench	Tinca tinca					

Pukk et al. in 2021; Diversity & Distributions

Building your 'baseline' sequence data base via GENBANK or your own Sanger sequencing

Crayfish examp	IE	1					1	1	1	1	1	1	1											
KJ6458271_Procambarus_clarkii																								
KT0364441_Procambarus_clarkii	1																							
KJ6458241_Procambarus_clarkii	2	1																						
KJ6458231_Procambarus_clarkii	2	1	0		(conspecific b	basepair di	fferences o	ut of 220 (0-3 base pair	s or 0.00%	to 1.36% w	ithin spe	ecies										
AF4360401_Procambarus_clarkii	1	0	1	1																				
KJ6458221_Procambarus_clarkii	2	1	0	0	1																			
KJ6458341_Procambarus_clarkii	2	1	2	2	1	2																		
KJ6458181_Procambarus_clarkii	3	2	3	3	2	3	1																	
KJ6458321_Procambarus_clarkii	2	1	2	2	1	2	2	3																
JX127827_Procambarus_acutus	11	10	11	11	10	11	11	12	9	Co	ongeneric b	asepair diff	erences	out of 220	(5-13 ba	ase pairs	or 2.2	7% to 5.4	5%)					
KF771116_Procambarus_acutus	8	7	8	8	7	8	8	9	6	5														
FJ619805_Procambarus_acutus	8	7	8	8	7	8	8	9	6	5	0													
FJ619804_Procambarus_acutus	8	7	8	8	7	8	8	9	6	5	0	0												
EU433915_Procambarus_acutus	12	11	12	12	11	12	12	13	10	9	8	8	8											
EF012354_Procambarus_acutus	7	6	7	7	6	7	7	8	5	4	1	1	1	7										
KC1634911_Fallicambarus_fodiens	23	22	21	21	22	21	22	21	23	26	24	24	24	24		23		confamili	al differen	ces are co	onsiderably	higher (Proc	ambarus vs	others)
KC1634701_Fallicambarus_fodiens	25	26	25	25	26	25	26	27	27	24	24	24	24	24		23	14							

Crayfish example

Considerations

- Often times sequences in DNA data base repositories originate from locales far removed from your study area
- Often times sequences from the same gene regions do not overlap completely, reducing the length of homologous regions
- Classification should embrace intra-specific diversity (how similar is a sequence no. base pair differences) to be treated as the same species vs higher taxonomic classification?

Fifth - Bioinformatic Data Analysis

- Sequence data was analysed using computer pipeline e.g., *Mothur*
- Reads were aligned to the taxonomic database
- Sequences were clustered into OTUs
- Prior to the analysis negative controls were used to account for contamination
- Unclassified OTUs subjected to BLAST

					-
Co	ommuni	ty mat	rix		VALL
Sample	BARKA	ANDA -		AND A LOCAL AND A	- ANI
ID1	11100	690		1232	A AAA
ID2	3334	45		0	
			:		ID
ID413	2	3076		5	

ecies/Abbrv	* * * * * *	
KM267719_Lampetra_appendix	ACCESS-ATTAGATACCC	c
KM267716_Ichthyomyzon_fossor	ACCESS-ATTAGATACCC	C
KM267717_Ichthyomyzon_unicuspis	ACCOCC-ATTACATACCC	C
Ull880_Petromyzon_marinus	ACCORG-ATTAGATACCC	C
AF125594_Polyodon_spathula	ACTEGE-ATTAGATACCC	c
AF125594_Polyodon_spathula_modified	ACTOGO-ATTAGATACCC	3
AF125595_Acipenser_fulvescens	ACTOGG-ATTAGATACCC	0
KU985081_Acipenser_fulvescens	ACTOGO-ATTAGATACCC	C
JF912031_Lepisosteus_oculatus	ACTOGO-ATTAGATACCC	3
). AB042861_Lepisosteus_oculatus	ACTEGE-ATTAGATACCC	0
. DQ536423_Lepisosteus_osseus	ACTOGO-ATTAGATACCC	0
2. JF912032_Lepisosteus_osseus	ACTOGE-ATTAGETACCC	C
3. JF912030_Lepisosteus_osseus	ACTGGG-ATTAGGTACCC	0
. JF912036_Lepisosteus_osseus	ACTGGG-ATTAGATAACC	3
. LNG00001_Lepisosteus_osseus	ACTGGG-ATTAGATACCC	5
5. AB042952_Amia_calva	ACTEGE-ATTAGATACCC	C
. AP009499_Hiodon_tergisus	ACTOGG-ATTAGATACCC	2
3. KJ564181_Anguilla_rostrata	ACTOGE-ATTAGATACCC	0
AF266497_Anguilla_rostrata	ACTGGG-ATTAGATACCC	c
). MG570421_Alosa_pseudoharengus	ACTOCO-ATTACATACCC	2
. NC037017_Alosa_aestivalis	ACTEGE - ATTAGATACCC	c

Analyses done at HPCC – high performance computing cluster

Community Matrix of metabarcoding eDNA (16S rDNA) for crayfish in Detroit metro-area wetlands

			Procambarus	Procambarus	Cambarus	Cambarus				Orconectes		
Location	Sample Type	clarkii	acutus	unclassified	diogenes		unclassified	virilis –		propinquus	rusticus	unclassified
	Control	1	0	0	0	0	0	7	0	0	2	0
Sheraton		8433	0	0	0	0	0	6	0	0	0	1
	Surface	15445	0	2	0	0	0	3	0	1	0	2
		17566	0	2	0	0	0	10	1	1	0	0
	Control	0	0	0	0	0	0	5	0	1	0	0
Rhodson		1	0	0	0	0	0	7146	1	0	0	96
Kilouson	Surface	0	0	0	0	0	0	16744	3	0	0	220
		0	0	0	0	0	0	19023	0	0	1	267
	Control	0	0	0	0	0	0	7	0	0	1	1
Luion	Surface	0	0	0	0	0	0	10182	2	1656	2	175
Lujon		391	0	0	0	2	0	17957	2	0	1	181
		1	0	0	0	1005	0	12012	0	1680	4	179
	Control	0	0	0	0	0	0	4	0	0	1	0
Fitzen augustal		0	0	0	0	1455	0	7	0	0	0	1
Fitzgerald	Surface	1	0	0	0	6521	1	13	0	0	0	2
		0	0	0	0	5039	3	9	0	0	6	0
	Control	0	0	0	0	0	0	5	0	0	0	1
F - i -		0	0	0	0	0	0	9071	0	0	1	89
Fairway	Surface	0	0	0	0	0	0	11418	1	0	0	111
		1	0	0	0	0	0	14	0	5	0	1
	Control	0	0	0	0	0	0	4	0	3	1	0
		0	0	0	0	0	0	7100	1	0	0	100
Fox Creek 1	Surface	2	0	0	0	0	0	17264	0	0	1	241
		0	0	0	0	0	0	10	0	0	3	2

Database developments for plants

- Reviewed literature and availability of sequences
 - ITS2, MatK, rbcL, tRNA-Leu p6 loop region
- Michigan's AIS Watchlist, and the Michigan EGLE p51 form
- queried NCBI for sequences of interest

Our experiences

- We reviewed the plant barcoding literature and found that most of the single-species assays developed thus far amplified loci that are too large (i.e., > 600 bp) for sequencing on Illumina's MiSeq platform (Hollingsworth et al. 2011) from eDNA.
- Interrogation of aquatic plant communities was conducted based on eDNA samples collected from fish surveys
- For tRNA-Leu and rbcL where metabarcoding data was collected from inland lakes, many aquatic plant AIS species had
 native congeners that could not be distinguished to species
- Based on the timing and location of sampling, in many samples and inland lakes that majority of sequences were from terrestrial and wetlands plant taxa

Part II – Applications – Michigan inland lake communities

MSU eDNA Metabarcoding Projects

Objectives

- Detect aquatic invasive species
- Compare with traditional gear surveys
- What lake characteristics predict diversity? Non-native prevalence?

22 inland lakes sampled (2016-2018)

- Sard et al. (2019) 8 lakes (fish)
- Pukk et al. (2021) 22 lakes (fish)
- Costello et al. (in prep) 22 lake (plants)*

ORIGINAL ARTICLE

WILEY

RESEARCH ARTICLE

Comparison of fish detections, community diversity, and relative abundance using environmental DNA metabarcoding and traditional gears

Nicholas M. Sard^{1,2} Seth J. Herbst³ Lucas Nathan³ Genelle Uhrig⁴ Jeannette Kanefsky² | John D. Robinson² | Kim T. Scribner^{2,5}

Lilian Pukk¹ | Jeannette Kanefsky¹ | Amanda L. Heathman¹ | Ellen M. Weise¹ | Lucas R. Nathan² | Seth J. Herbst² | Nicholas M. Sard³ | Kim T. Scribner^{1,4} John D. Robinson¹

Sampled Lakes

ARTICLE

A Landscape-Based Classification of Fish Assemblages in Sampled and Unsampled Lakes

Kevin E. Wehrly,* James E. Breck, Lizhu Wang, and Lidia Szabo-Kraft Institute for Fisheries Research, Michigan Department of Natural Resources and University of Michigan, 212 Museums Annex, 1109 North University Avenue, Ann Arbor, Michigan 48109, USA

Sampled Lake Classes

	Number	
Lake		
Class	Total	Percent
1	10	45
2	6	27
3	2	9
4	0	0
5	2	9
6	2	9

Lake Selection

Represent environmental variation

- Lake area 14 to 8000 hectares
- Max depth 2 to 87 m
- Development 1.5% to 90%+
- Connectivity isolated to highly connected

Include...

- Lakes popular with anglers (Houghton / Higgins)
- Highly developed areas (Cass / Livingston Co.)
- Deep, cold lakes (Torch Lake)

Prioritized lakes with fish survey data available

eDNA Sampling Methods

Paired samples with Status and Trends (13 lakes)

- 30 to 57 samples per lake, over 950 total samples
- Collections include surface and benthic water samples
- Negative controls processed in the field and lab

1L filtered on site with Smith-Root ANDe backpack

- Single-use filter housings limit potential contamination
- DNA extraction \rightarrow PCR (2 markers) \rightarrow sequencing

Objective 1 – evaluate eDNA relative to traditional gear

2. Without traditional gear - random

Results – example for 1 lake of raw eDNA and traditional community matrices

Fish Species Detected

eDNA vs. Traditional Gear

vs

Both eDNA markers detect more species than traditional gear (12 of 13 lakes)

Information on Abundance / Biomass eDNA vs. Traditional Gear

Comparing estimates of relative abundance from eDNA to those from Status and Trends

 Significant correlations b/w rank abundance (traditional gear) and eDNA detection rate

eDNA vs Traditional gear

Traditional

•eDNA samples have less inter-sample variation in fish species

•Different gear types are known to be selective for specific fish species

Sard et al. (2020) Environmental DNA

Non-metric multidimensional scaling plot, comparing **Bray-Curtis distance** matrices among 12S (red), 16S (blue) and traditional (green) sampling approaches.

Species accumulation curve for traditional and eDNA sampling approaches

The eDNA approach detected round goby in more samples than traditional gear (eDNA 6 of 8 lakes vs traditional 3 of 8 lakes)

Proportion of aquatic invasive fish species reads and the counts of AIS per lake (16S) for 22 Michigan inland lakes.

Objective 2 – Estimation of Detection Probability Occupancy Modeling - eDNA vs. Traditional Gear

Pukk et al. (2021)

Information on Abundance / Biomass Mock Community Samples

"Mock communities"

- Mixtures of DNA from 10 species
- Three mixtures with different relative concentrations

Results

- DNA concentration tightly correlated with read counts (r = 0.68)
- Some evidence of amplification bias for particular taxa (sea lamprey)

12S Mock Communities

Objective 3 - Influences of Lake Characteristics

What lake attributes contribute to variation in...

- Diversity of the fish community?
- Prevalence of non-native species?

Water quality / ecological data from LAGOS database

- 51,000 total lakes (> 4 ha)
- 15,000+ lakes in Michigan
- Climate, land use, area, depth, connectivity, water quality...

LAGOS-NE: a multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of US lakes \Im

Patricia A Soranno ☎, Linda C Bacon, Michael Beauchene, Karen E Bednar, Edward G Bissell, Claire K Boudreau, Marvin G Boyer, Mary T Bremigan, Stephen R Carpenter, Jamie W Carr ... Show more

GigaScience, Volume 6, Issue 12, December 2017, gix101,

LAGOS – lake multi-scaled geospatial and temporal database

Data Article 🖻 Open Access 💿 😧

LAGOS-US LOCUS v1.0: Data module of location, identifiers, and physical characteristics of lakes and their watersheds in the conterminous U.S.

Kendra Spence Cheruvelil 🕱 Patricia A. Soranno, Ian M. McCullough, Katherine E. Webster, Lauren K. Rodriguez, Nicole J. Smith

Species Richness

Area of upstream lakes (connectivity) was positively related to fish species richness

- Both eDNA markers show this relationship
- Connectivity, rather than lake size, drives diversity

AIS Prevalence

Evidence for positive relationships between...

- AIS prevalence and area of upstream lakes
- Number of AIS fish and % developed or agricultural land (disturbance / development)

Objective 4 - Spatial Information in the Data

Visualize patterns of species richness and sequence abundance

Identify associations between physical lake features and...

- Species richness?
- AIS sequence abundance?

Prioritizing control efforts

- Targeted removal of invasive species
- Specific areas for follow-up sampling?

Diversity and Distributions WILEY

eDNA metabarcoding in lakes to quantify influences of landscape features and human activity on aquatic invasive species prevalence and fish community diversity

Lilian Pukk¹ | Jeannette Kanefsky¹ | Amanda L. Heathman¹ | Ellen M. Weise¹ | Lucas R. Nathan² | Seth J. Herbst² | Nicholas M. Sard³ | Kim T. Scribner^{1,4} | John D. Robinson¹

Selecting a Metabarcoding Marker for Plants

Sard et al. (unpubl) MSU – tRNA-Leu

Fahner et al. (2016) – *ITS2* or *rbcL*

Coghlan et al. (2019) assessed both markers

 Improved species-level detection with *rbcL*

Taxonomic database

- 3174 unique sequences from 2212 species
- Habitat and native / non-native classifications

PLOS ONE

Large-Scale Monitoring of Plants through Environmental DNA Metabarcoding of Soil: Recovery, Resolution, and Annotation of Four DNA Markers

Environmental DNA

Development of an environmental DNA metabarcoding assay for aquatic vascular plant communities

Stephanie A. Coghlan¹ | Aaron B. A. Shafer^{1,2} | Joanna R. Freeland^{1,3}

omatK2 orbcL2 orbcLa oITSn oITS2 000 000 000 000 Nymphaeales 000 00 00 Commelinales angiosperms 0000 0000 0000 0000 Poales 0000 Asparagales C monocots Alismatale 0 0 0 0 0 Acorales Ceratophyllales 0 0 \cap \cap **Myrtales** 0 \cap 000 Saxifragale 00 00 Asterales Coghlan et al. (2019)

Nicole A. Fahner¹, Shadi Shokralla¹, Donald J. Baird², Mehrdad Hajibabaei¹*

Species Richness by Group

Species richness varied across lakes

- 18 species detected in Mullett Lake
- 85 species detected in Pentwater Lake

48-77% of detected species were from terrestrial habitats

GLMs: Species Richness of the Plant Community

Plant species richness best predicted by Julian Day (sampling)

Fewer plant species detected in samples collected *later* in the summer

Non-native Plant Species Richness

Across habitats (aquatic, terrestrial, wetland), 3 to 24 non-native species detected per lake

- Mullett Lake 3 non-native species
- Long Lake 24 non-native species

Non-native Aquatic Plant Detections*

White Water Lily Nymphaea alba 20 lakes

Purple Loosestrife Lythrum salicaria 8 lakes

Flowering Rush Butomus umbellatus Cass & Five Channels

Spiny Water-Nymph Najas marina Austin

Brittle Water-Nymph Najas minor Thompson

Common reed Phragmites australis* Holloway & Cass

Curly-Leaf Pondweed? *Potamogeton* sp.* 21 lakes (many samples)

Eurasian Watermilfoil? *Myriophyllum* sp.* 16 lakes (1-26 samples)

Comparison with DEQ/EGLE surveys

11 lakes with DEQ/EGLE survey data (2016-2018): 13 non-native plants

• 5 of 13 identified at species level with *rbcL*

4/8

eDNA/DEQ + Extra eDNA

Phragmites australis 1/3 + 1

0/1 + 1

Butomus umbellatus

Frangula alnus 1/1 + 2

• 4 of 13 with *possible* genus-level detections

eDNA/DEQ + Extra eDNA 6/9 + 1

lris sp. 2/4

1/2

Typha sp. 2/4 + 2

Potamogeton sp. 5/5 + 5

Proportional Representation of Non-native Species

Non-native representation varied widely across lakes

- Kimball and Pickerel Lakes < 0.5% non-native
- Mullett Lake >50% non-native

On average, 14.6% of reads were attributed to non-native plants

GLMs: Proportional Representation of Non-native Plants

Proportion of reads attributed to non-native plants was related to lake area

- Torch Lake 25%
- Houghton Lake 32%
- Mullett Lake 52%

df	logLik	AICc	ΔΑΙϹ	ωί
3	26.291	-45.2	0.00	0.975
6	27.739	-37.9	7.37	0.024
9	28.900	-24.8	20.45	0.000
3	13.574	-19.8	25.43	0.000
5	15.225	-16.7	28.55	0.000
2	10.490	-16.3	28.90	0.000
3	11.807	-16.3	28.97	0.000
3	11.470	-15.6	29.64	0.000
3	11.211	-15.1	30.16	0.000
3	10.829	-14.3	30.93	0.000
3	10.581	-13.8	31.42	0.000
	3 6 9 3 5 2 3 3 3 3 3 3	3 26.291 6 27.739 9 28.900 3 13.574 5 15.225 2 10.490 3 11.807 3 11.211 3 10.829	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Summary

Surprising amount of terrestrial signal

• Highest in areas with low human impact

Species richness highest earlier in the year

- Partially driven by terrestrial taxa
- Inconsistent with periods of higher growth (aquatics)

Several common non-native spp. detected

- Non-native representation increased with lake size
- Limited resolution to species level with *rbcL*

Considerations for eDNA Metabarcoding

Marker choice is critical

- Short gene fragments likely persist longer in the environment
- Long fragments allow for more species-level identification
- Need a database of sequences at the chosen marker (BOLD, GenBank)

Connections with abundance / biomass

- Relationships are influenced by a wide variety of biotic and abiotic factors
- Biotic density, other community members, deposition, reproductive status
- Abiotic pH, temperature, flow, sampling season

Potential for false-positive detections

- Species-specific eDNA analysis
- May require follow-up sampling

Recommendations

Plant eDNA metabarcoding has potential...

- Need markers with species-level resolution
- Timing of sampling is important

Likely best if paired with other approaches

- Traditional surveys
- Species-specific eDNA assays (potentially using the same samples)

Develop new markers to improve resolution

- Longer sequences?
- Plant group-specific primers?
- Expand on existing sequence repositories (ITS2, trnL, matK)

Acknowledgements

Michigan DNR / EGLE

Seth Herbst Lucas Nathan Billy Keiper Sarah LeSage

MSU Fisheries & Wildlife

Jeannette Kanefsky Nick Sard (SUNY Oswego) Lilian Pukk (EMU) Antonio Castilla (MSU Texas) Amanda Heathman Ellie Weise

Funding

Great Lakes Restoration Initiative

Michigan DNR

MSU Research Support

RTSF Genomics Core

RES1

ICER High Performance Computing Cluster

Proportion of rbcL plant sequences per taxonomic group per lake and total across all 22 sampled lakes

