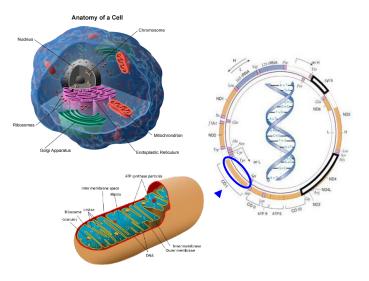
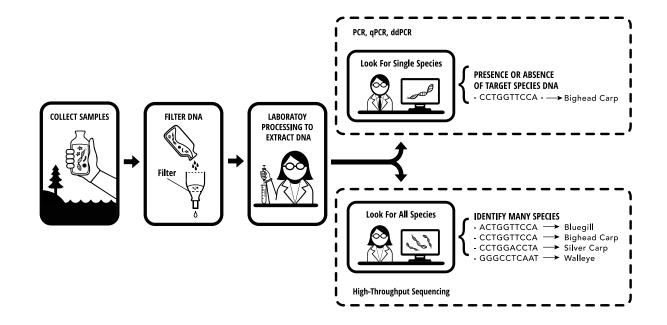
Environmental DNA surveillance for aquatic plants: a 21st century tool for species detection, biodiversity monitoring and management

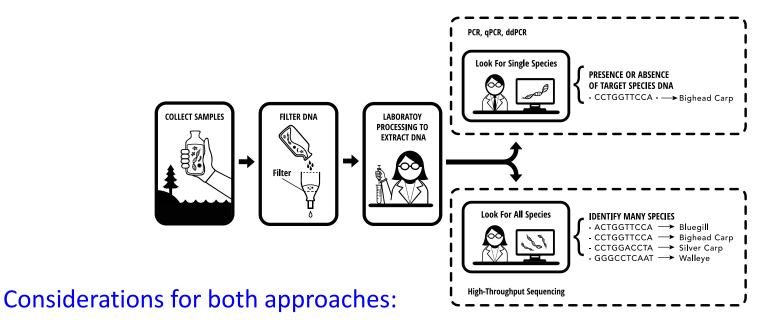

Chris Wilson and Stephanie Coghlan Aquatic Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry

Environmental DNA (eDNA)


- cells / DNA shed from living or dead organisms into surrounding environment
- "molecular smoke alarm"
- doesn't say what the source was
 - living / dead; body parts; fluids, cells, free molecules, etc.
- doesn't tell re: age, sex, size, reproductive status, population info
- positive detection = DNA from the species was present at that location when the sample was collected

www.shutterstock.com 53017405

Complementary approaches: targeted and community eDNA assays

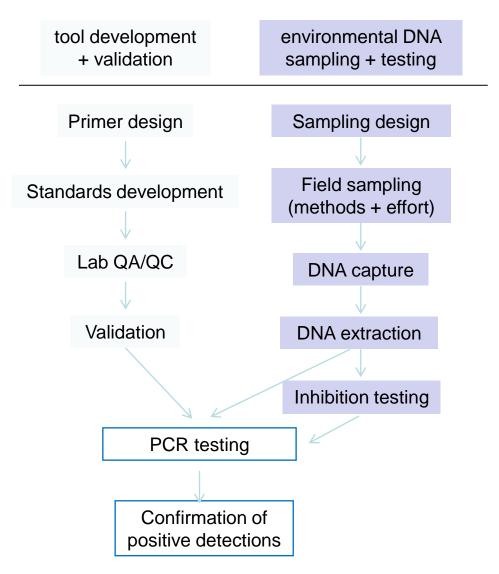


<u>Active surveillance</u>: **targeted single species** eDNA testing to evaluate if a species is present (bighead carp, tench)

<u>Passive surveillance</u>: use **community eDNA** or **eDNA metabarcoding** to characterize aquatic communities / local species assemblages (fish, invertebrates, plants, etc.) using high-throughput sequencing

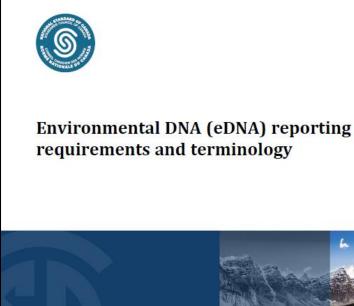
(www.glfc.org/science-transfer-toolkit.php)

Complementary approaches: targeted and community eDNA assays



- species specificity and sensitivity
- spatial sensitivity
- temporal sensitivity
- quantitative sensitivity

(www.glfc.org/science-transfer-toolkit.php)


Information needs for eDNA data acceptance

- "Invisible Man" scenario
- habitat description + characteristics
- sampling design + effort
- spatial + temporal metadata
- assay metadata
 - technology used
 - test conditions (details)
 - assay sensitivity + specificity
 - replicates + controls

Information needs for eDNA data acceptance

- "Invisible Man" scenario
- habitat description + characteristics
- sampling design + effort
- spatial + temporal metadata
- assay metadata
 - technology used
 - test conditions (details)
 - assay sensitivity + specificity
 - replicates + controls

GROUP"

CSA W214:21

National Standard of Canada

(www.csagroup.org)

Challenges for aquatic plant eDNA

- more challenging DNA barcoding for assay design
- less available baseline sequence data
- lower shedding rate vs animals (movement, excretion, temperaturerelated activity levels, vegetative reproduction)
- seasonal variation in shedding (growth vs. senescence)
- long-distance drifting of plant remains (rafting, etc.)
- passive dispersal by boats, trailers, propellors
- dormant life stages

Targeted eDNA assays for "least wanted" aquatic plants

(CrossMark

Aquatic Botany 122 (2015) 27-31

Short communication

Development of species-specific environmental DNA (eDNA) markers for invasive aquatic plants

^a Department of Biology. Tent University, Peterborough, ONKSK 1X4, Canada ^b Environmenial and Life Sciences Caduate Program, Tent University, Peterborough, ON K9K 1X4, Canada ^A Aquatic Biodiversity and Conservation Unit, United Ministry of Natural Resources and Forestry, Trent University, Peterborough, ON K9K 1X4, Canada

matK, rbcL, trnH-bsbA as target sequences:

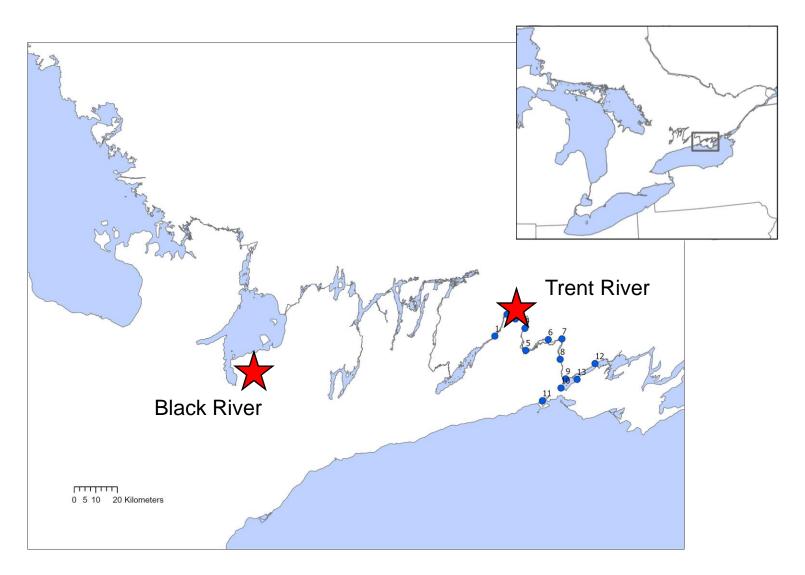
Water soldier

Eurasian water milfoil

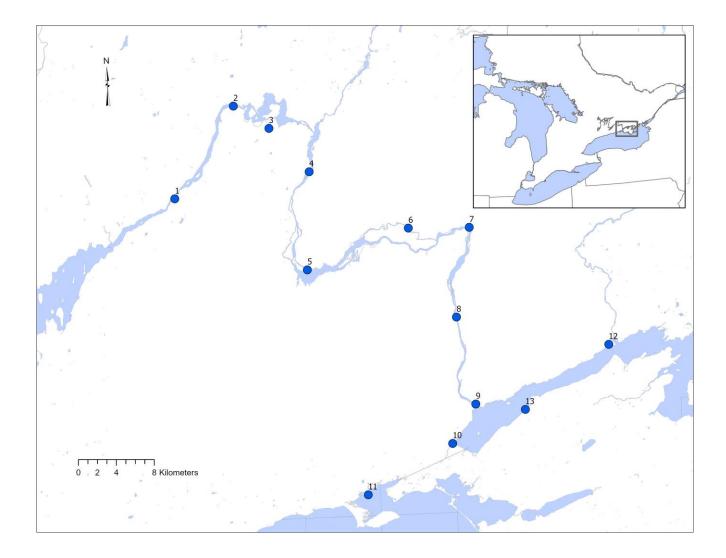
Carolina Fanwort

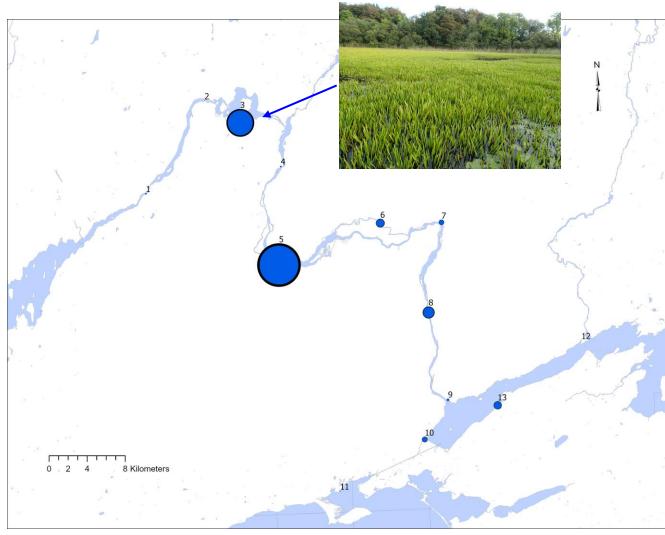
Parrotfeather

Water hyacinth

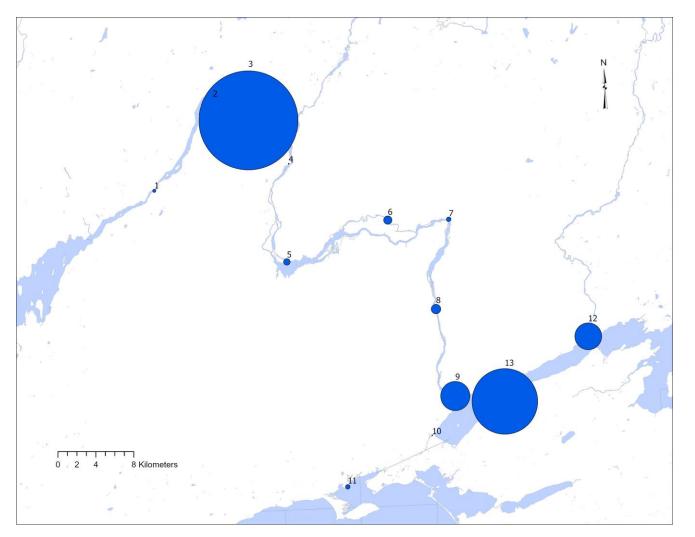

Water lettuce

Yellow floating heart

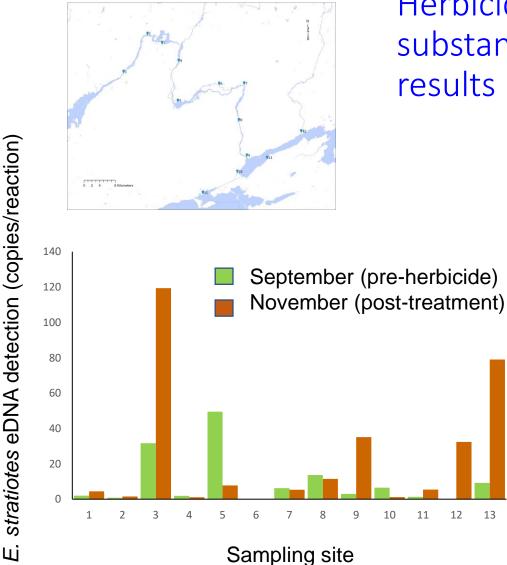

(Scriver et al. 2015)


Water soldier infestations in Ontario

Water soldier eDNA sampling in the Trent-Severn Waterway



September 2021 eDNA detection results (pre-herbicide treatment)



- strong detections at known established populations
- weak detections at sampling sites without known species presence, including Bay of Quinte in Lake Ontario
- presence confirmed in 2022

November 2021 eDNA detection results (post-herbicide treatment)

- very strong detection at treatment site
- strong detections also at untreated sites in Bay of Quinte
- weak detections at sites without known species presence at the time
- presence confirmed in 2022

ш

Herbicide treatment substantially affected eDNA results

Pre-herbicide treatment

- weak detections upstream of established population (site 3) before herbicide treatment
- weak detections in Bay of • Quinte and Presqu'ile Bay (Lake Ontario)

Post-treatment

- strong detections in • treatment area
- Strong detections downstream of treatment area most likely reflect flushing of dead material

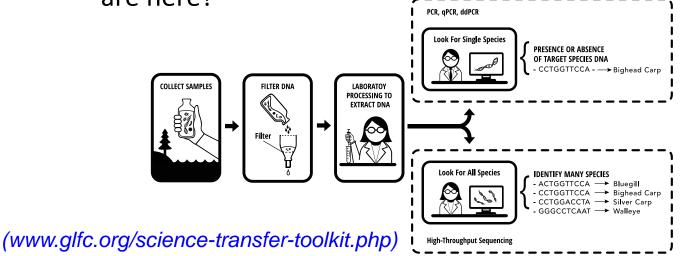
Targeted eDNA efforts for invasive aquatic plants

Water soldier control / eradication

- 2022 detections in Bay of Quinte visually confirmed by plant surveys
 - Local removal efforts
 - Expanded survey in 2023 incorporating hydrodynamic modelling
- Black River eradication considered successful after 3 years of no positive detections

Other species

- Water chestnut (Kingston area, Lake Ontario) strong detections in treatment area
- Hydrilla (Niagara River)


Stakeholders / citizen science

 Invasive Species Centre: eDNA sampling for community AIS detection in Ontario <u>www.invasivespeciescentre.ca/eDNA</u>

Why eDNA metabarcoding?


- Large areas to cover don't need to locate individual plants
- Experts required to ID physical specimens
- Species-specific eDNA solves some of these, but requires prior knowledge of expected species/species of interest
- Metabarcoding allows us to gain comprehensive knowledge of what species are present
 - Instead of "is water soldier here?" we're asking "what plants are here?"

Metabarcoding

Well-developed assays and databases for other organisms

• Animals, invertebrates, microbes

Sources:

- Water
- Soil
- Pollen
- Air

American J of Botany, Volume: 110, Issue: 2, First published: 11 January 2023, DOI: (10.1002/ajb2.16120)

My MSc thesis

• Dr. Joanna Freeland & Dr. Aaron Shafer

- Develop aquatic plant metabarcoding assays
- Developed assays for 3 gene regions
 - Well-represented in database and appropriate for metabarcoding
 - matK, rbcL, and ITS2
- Tested against metabarcoding assays (rbcL and ITS2) developed for terrestrial plant metabarcoding from soil samples (Fahner et al. 2016)

Mock community

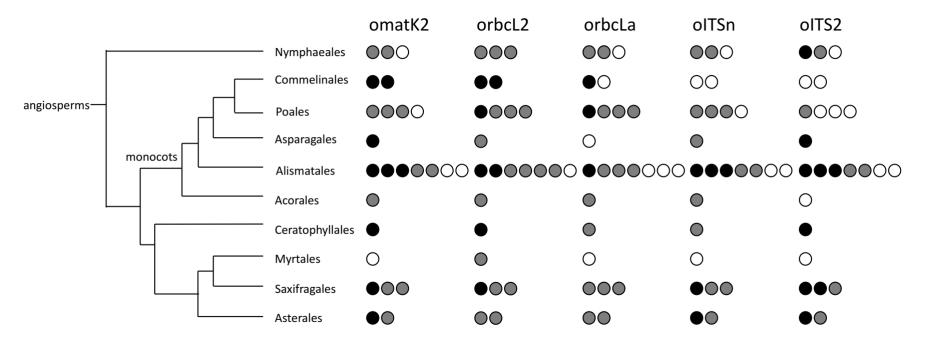
- eDNA sample of known composition
- Provides baseline of what to expect in results

omatK2: 9 species-level, 11 genus-level
orbcL2: 7 species-level, 17 genus-level

omatK2 + orbcL2 + oITS2: 14 specieslevel, 10 genus-level

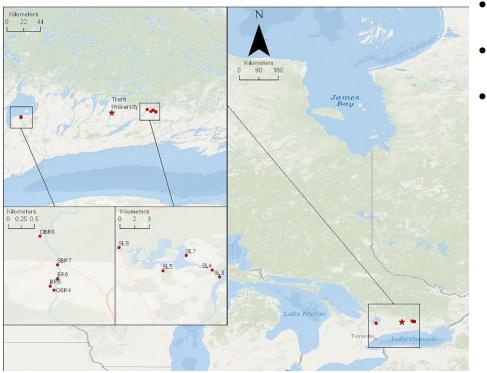
Species	omatK2	orbcL2	orbcLa	olTSn	oITS2
Nymphaeales					
Cabomba caroliniana					
Nuphar variegata					
Nymphaea odorata					
Poales					
Phragmites australis					
Typha latifolia					
Typha minima					
Alismatales					
Elodea canadensis					
Hydrocharis morsus-ranae					
Potamogeton crispus					
Potamogeton strictifolius					
Stratiotes aloides					
Vallisneria americana					
Other monocots					
Acorus calamus					
Eichhornia crassipes					
Iris pseudacorus					
Pistia stratiotes					
Pontederia cordata					
Schoenoplectus acutus					
Dicots					
Ceratophyllum demersum					
Megalodonta beckii					
Myriophyllum aquaticum					
Myriophyllum sibiricum					
Myriophyllum spicatum					
Nymphoides peltata					
Trapa natans					
Coghlan et al.	2021				

Mock community


AIS/species of concern in Ontario:

Carolina fanwort Frogbit Water soldier Water hyacinth Yellow iris Water lettuce Parrot feather Eurasian watermilfoil Yellow floating heart European water chestnut

Species	omatK2	orbcL2	orbcLa	olTSn	oITS2
Nymphaeales					
Cabomba caroliniana					
Nuphar variegata					
Nymphaea odorata					
Poales					
Phragmites australis					
Typha latifolia					
Typha minima					
Alismatales					
Elodea canadensis					
Hydrocharis morsus-ranae					
Potamogeton crispus					
Potamogeton strictifolius					
Stratiotes aloides					
Vallisneria americana					
Other monocots					
Acorus calamus					
Fichhornia crassines					
Iris pseudacorus					
Pistia stratiotes					
Pontederia cordata					
Schoenoplectus acutus					
Dicots					
Ceratophyllum demersum					
Megalodonta beckii					
Myriophyllum aquaticum					
Myriophyllum sibiricum					
Myriophyllum spicatum					
Nymphoides peltata					
Trapa natans					


Coghlan et al. 2021

Diversity of identified species

Coghlan et al. 2021

Pilot sites

Coghlan et al. 2021

- Black River
- 17 species
- 24 genera

- Seymour Lake
- 14 species
- 27 genera

Noteworthy detections:

Flowering rush (*B. umbellatus*) Frogbit (*H. morsus-ranae*) Yellow iris (*I. pseudacorus*) Parrot feather (*M. aquaticum*) Yellow floating heart (*N. peltata*) Phragmites (*P. australis*) Water lettuce (*P. stratiotes*) Water soldier (*S. aloides*)

Work since MSc

Testing orbcL2 on more sites and more replicates

- 44 sites
- orbcL2 identified all but one species from mock community to at least genus-level, and identified largest number of species from pilot sites
- Monitor water soldier presence following removal/herbicide treatments

General results

- Noteworthy aquatics
 - AIS: European frogbit (Hydrocharis morsus-ranae), flowering rush (Butomus umbellatus), water soldier (Stratiotes aloides)

Limitations

Challenges with plant DNA in general

- Assay design: in<u>ter</u>specific variation does not consistently exceed in<u>tra</u>specific variation; multi-assay approach might yield best results
 - Hybrids
- Taxonomic resolution often genus-level ID
- Doesn't offer insight to abundance
- Relies on complete, error-free reference database

Strengths and next steps

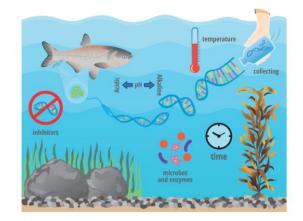
Monitor biodiversity over time

- Incl. species occurrences before and after AIS invasions, patterns of co-occurring organisms
- Beyond plants same samples can be used for any organisms
- Establish a baseline for routine monitoring
- Early signs of invasions, particularly when you don't know what species you expect to find

May lead to targeted inquiries

eDNA resources

www.csagroup.org


GLFC Science Transfer eDNA

http://www.glfc.org/

science-transfer-toolkit.php

Uses and Limitations of Environmental DNA (eDNA) in Fisheries Management Project leader: Welsh, A.

www.gen-fish.ca

eDNAtlas (USDA and USFS):

www.fs.usda.gov/rmrs/projects/aquatic-ednatlas-project